Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 280
Filter
1.
Diabetes Care ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843460

ABSTRACT

The development of glucagon-like peptide 1 receptor agonists (GLP-1RA) for type 2 diabetes and obesity was followed by data establishing the cardiorenal benefits of GLP-1RA in select patient populations. In ongoing trials investigators are interrogating the efficacy of these agents for new indications, including metabolic liver disease, peripheral artery disease, Parkinson disease, and Alzheimer disease. The success of GLP-1-based medicines has spurred the development of new molecular entities and combinations with unique pharmacokinetic and pharmacodynamic profiles, exemplified by tirzepatide, a GIP-GLP-1 receptor coagonist. Simultaneously, investigational molecules such as maritide block the GIP and activate the GLP-1 receptor, whereas retatrutide and survodutide enable simultaneous activation of the glucagon and GLP-1 receptors. Here I highlight evidence establishing the efficacy of GLP-1-based medicines, while discussing data that inform safety, focusing on muscle strength, bone density and fractures, exercise capacity, gastrointestinal motility, retained gastric contents and anesthesia, pancreatic and biliary tract disorders, and the risk of cancer. Rapid progress in development of highly efficacious GLP-1 medicines, and anticipated differentiation of newer agents in subsets of metabolic disorders, will provide greater opportunities for use of personalized medicine approaches to improve the health of people living with cardiometabolic disorders.

2.
Mol Metab ; 83: 101915, 2024 May.
Article in English | MEDLINE | ID: mdl-38492844

ABSTRACT

OBJECTIVE: The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr). METHODS: Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis. Mice with deletion of Gipr in Lepr cells were generated and metabolically characterized for alterations in diet-induced obesity (DIO), glucose control and leptin sensitivity. Long-acting single- and dual-agonists at GIPR and GLP-1R were further used to assess drug effects on energy and glucose metabolism in DIO wildtype (WT) and Lepr-Gipr knock-out (KO) mice. RESULTS: Gipr and Lepr show strong co-expression in the pancreas, but not in the hypothalamus and hindbrain. DIO Lepr-Gipr KO mice are indistinguishable from WT controls related to body weight, food intake and diet-induced leptin resistance. Acyl-GIP and the GIPR:GLP-1R co-agonist MAR709 remain fully efficacious to decrease body weight and food intake in DIO Lepr-Gipr KO mice. Consistent with the demonstration that Gipr and Lepr highly co-localize in the endocrine pancreas, including the ß-cells, we find the superior glycemic effect of GIPR:GLP-1R co-agonism over single GLP-1R agonism to vanish in Lepr-Gipr KO mice. CONCLUSIONS: GIPR signaling in cells/neurons that express the leptin receptor is not implicated in the control of body weight or food intake, but is of crucial importance for the superior glycemic effects of GIPR:GLP-1R co-agonism relative to single GLP-1R agonism.


Subject(s)
Body Weight , Eating , Gastric Inhibitory Polypeptide , Mice, Knockout , Obesity , Receptors, Gastrointestinal Hormone , Receptors, Leptin , Animals , Male , Mice , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Glucose/metabolism , Leptin/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/genetics , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Signal Transduction
3.
Mol Metab ; 83: 101924, 2024 May.
Article in English | MEDLINE | ID: mdl-38521185

ABSTRACT

OBJECTIVES: Gut microbiota increases energy availability through fermentation of dietary fibers to short-chain fatty acids in conventionally raised mice. Energy deficiency in germ-free (GF) mice increases glucagon-like peptide-1 (GLP-1) levels, which slows intestinal transit. To further analyze the role of GLP-1-mediated signaling in this model of energy deficiency, we re-derived mice lacking GLP-1 receptor (GLP-1R KO) as GF. METHODS: GLP-1R KO mice were rederived as GF through hysterectomy and monitored for 30 weeks. Mice were subjected to rescue experiments either through feeding an energy-rich diet or colonization with a normal cecal microbiota. Histology and intestinal function were assessed at different ages. Intestinal organoids were assessed to investigate stemness. RESULTS: Unexpectedly, 25% of GF GLP-1R KO mice died before 20 weeks of age, associated with enlarged ceca, increased cecal water content, increased colonic expression of apical ion transporters, reduced number of goblet cells and loss of colonic epithelial integrity. Colonocytes from GLP-1R KO mice were energy-deprived and exhibited increased ER-stress; mitochondrial fragmentation, increased oxygen levels and loss of stemness. Restoring colonic energy levels either by feeding a Western-style diet or colonization with a normal gut microbiota normalized gut phenotypes and prevented lethality. CONCLUSIONS: Our findings reveal a heretofore unrecognized role for GLP-1R signaling in the maintenance of colonic physiology and survival during energy deprivation.


Subject(s)
Colon , Energy Metabolism , Gastrointestinal Microbiome , Glucagon-Like Peptide-1 Receptor , Goblet Cells , Mice, Knockout , Signal Transduction , Animals , Glucagon-Like Peptide-1 Receptor/metabolism , Gastrointestinal Microbiome/physiology , Mice , Goblet Cells/metabolism , Colon/metabolism , Colon/microbiology , Mice, Inbred C57BL , Male , Female , Glucagon-Like Peptide 1/metabolism
4.
Cell Metab ; 36(2): 338-353, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38198966

ABSTRACT

Traditional approaches to prevention of the complications of type 2 diabetes (T2D) and obesity have focused on reduction of blood glucose and body weight. The development of new classes of medications, together with evidence from dietary weight loss and bariatric surgery trials, provides new options for prevention of heart failure, chronic kidney disease, myocardial infarction, stroke, metabolic liver disease, cancer, T2D, and neurodegenerative disorders. Here I review evidence for use of lifestyle modification, SGLT-2 inhibitors, GLP-1 receptor agonists, selective mineralocorticoid receptor antagonists, and bariatric surgery, for prevention of cardiorenal and metabolic complications in people with T2D or obesity, highlighting the contributions of weight loss, as well as weight loss-independent mechanisms of action. Collectively, the evidence supports a tailored approach to selection of therapeutic interventions for T2D and obesity based on the likelihood of developing specific complications, rather than a stepwise approach focused exclusively on glycemic or weight control.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Diabetes Mellitus, Type 2/metabolism , Obesity/complications , Obesity/drug therapy , Body Weight , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Weight Loss , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents/therapeutic use
5.
Cell Metab ; 36(3): 575-597.e7, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38237602

ABSTRACT

The glucagon receptor (GCGR) in the kidney is expressed in nephron tubules. In humans and animal models with chronic kidney disease, renal GCGR expression is reduced. However, the role of kidney GCGR in normal renal function and in disease development has not been addressed. Here, we examined its role by analyzing mice with constitutive or conditional kidney-specific loss of the Gcgr. Adult renal Gcgr knockout mice exhibit metabolic dysregulation and a functional impairment of the kidneys. These mice exhibit hyperaminoacidemia associated with reduced kidney glucose output, oxidative stress, enhanced inflammasome activity, and excess lipid accumulation in the kidney. Upon a lipid challenge, they display maladaptive responses with acute hypertriglyceridemia and chronic proinflammatory and profibrotic activation. In aged mice, kidney Gcgr ablation elicits widespread renal deposition of collagen and fibronectin, indicative of fibrosis. Taken together, our findings demonstrate an essential role of the renal GCGR in normal kidney metabolic and homeostatic functions. Importantly, mice deficient for kidney Gcgr recapitulate some of the key pathophysiological features of chronic kidney disease.


Subject(s)
Receptors, Glucagon , Renal Insufficiency, Chronic , Humans , Animals , Mice , Receptors, Glucagon/metabolism , Down-Regulation , Mice, Knockout , Kidney/metabolism , Homeostasis/physiology , Lipids
7.
Kidney Int ; 105(1): 132-149, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38069998

ABSTRACT

Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Rats , Mice , Animals , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Diabetic Nephropathies/etiology , Diabetic Nephropathies/genetics , Liraglutide/pharmacology , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor/genetics , Diabetes Mellitus, Experimental/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/therapeutic use , Inflammation
8.
Cell Metab ; 36(1): 130-143.e5, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38113888

ABSTRACT

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) exert anti-inflammatory effects relevant to the chronic complications of type 2 diabetes. Although GLP-1RAs attenuate T cell-mediated gut and systemic inflammation directly through the gut intraepithelial lymphocyte GLP-1R, how GLP-1RAs inhibit systemic inflammation in the absence of widespread immune expression of the GLP-1R remains uncertain. Here, we show that GLP-1R activation attenuates the induction of plasma tumor necrosis factor alpha (TNF-α) by multiple Toll-like receptor agonists. These actions are not mediated by hematopoietic or endothelial GLP-1Rs but require central neuronal GLP-1Rs. In a cecal slurry model of polymicrobial sepsis, GLP-1RAs similarly require neuronal GLP-1Rs to attenuate detrimental responses associated with sepsis, including sickness, hypothermia, systemic inflammation, and lung injury. Mechanistically, GLP-1R activation leads to reduced TNF-α via α1-adrenergic, δ-opioid, and κ-opioid receptor signaling. These data extend emerging concepts of brain-immune networks and posit a new gut-brain GLP-1R axis for suppression of peripheral inflammation.


Subject(s)
Diabetes Mellitus, Type 2 , Sepsis , Humans , Exenatide , Glucagon-Like Peptide 1/metabolism , Peptides/pharmacology , Toll-Like Receptor Agonists , Venoms/pharmacology , Tumor Necrosis Factor-alpha , Inflammation , Glucagon-Like Peptide-1 Receptor/metabolism
9.
Endocrinology ; 164(6)2023 04 17.
Article in English | MEDLINE | ID: mdl-37139968

ABSTRACT

Protein intake potently increases body temperature and energy expenditure, but the underlying mechanism thereof remains incompletely understood. Simultaneously, protein intake potently stimulates glucagon-like peptide-1 (GLP-1) secretion. Here, we examined the involvement of GLP-1 in the thermic effects of dietary proteins in rodents by measuring rectal temperature and energy expenditure and modulating GLP-1 signaling. Rectal temperature of rats or mice fasted for 4 or 5 hours were measured using a thermocouple thermometer before and after an oral administration of nutrients. Oxygen consumption after oral protein administration was also measured in rats. Rectal temperature measurements in rats confirmed an increase in core body temperature after refeeding, and the thermic effect of the oral administration of protein was greater than that of a representative carbohydrate or lipid. Among the five dietary proteins examined (casein, whey, rice, egg, and soy), soy protein had the highest thermic effect. The thermic effect of soy protein was also demonstrated by increased oxygen consumption. Studies using a nonselective ß-adrenergic receptor antagonist and thermal camera suggested that brown adipose tissue did not contribute to soy protein-induced increase in rectal temperature. Furthermore, the thermic effect of soy protein was completely abolished by antagonism and knockout of the GLP-1 receptor, yet potentiated via augmentation of intact GLP-1 levels through inhibition of dipeptidyl peptidase-4 activity. These results indicate that GLP-1 signaling is essential for the thermic effects of dietary proteins in rats and mice, and extend the metabolic actions of GLP-1 ensuing from nutrient ingestion to encompass the thermic response to ingested protein.


Subject(s)
Glucagon-Like Peptide 1 , Rodentia , Rats , Mice , Male , Animals , Glucagon-Like Peptide 1/metabolism , Rodentia/metabolism , Soybean Proteins/pharmacology , Dietary Proteins , Eating/physiology , Glucagon-Like Peptide-1 Receptor , Glucagon-Like Peptide 2/pharmacology
10.
Mol Metab ; 72: 101718, 2023 06.
Article in English | MEDLINE | ID: mdl-37030441

ABSTRACT

OBJECTIVE: Glucagon-like peptide-1 receptor (GLP-1R) agonists (GLP-1RA) and fibroblast growth factor-21 (FGF21) confer similar metabolic benefits. GLP-1RA induce FGF21, leading us to investigate mechanisms engaged by the GLP-1RA liraglutide to increase FGF21 levels and the metabolic relevance of liraglutide-induced FGF21. METHODS: Circulating FGF21 levels were measured in fasted male C57BL/6J, neuronal GLP-1R knockout, ß-cell GLP-1R knockout, and liver peroxisome proliferator-activated receptor alpha knockout mice treated acutely with liraglutide. To test the metabolic relevance of liver FGF21 in response to liraglutide, chow-fed control and liver Fgf21 knockout (LivFgf21-/-) mice were treated with vehicle or liraglutide in metabolic chambers. Body weight and composition, food intake, and energy expenditure were measured. Since FGF21 reduces carbohydrate intake, we measured body weight in mice fed matched diets with low- (LC) or high-carbohydrate (HC) content and in mice fed a high-fat, high-sugar (HFHS) diet. This was done in control and LivFgf21-/- mice and in mice lacking neuronal ß-klotho (Klb) expression to disrupt brain FGF21 signaling. RESULTS: Liraglutide increases FGF21 levels independently of decreased food intake via neuronal GLP-1R activation. Lack of liver Fgf21 expression confers resistance to liraglutide-induced weight loss due to attenuated reduction of food intake in chow-fed mice. Liraglutide-induced weight loss was impaired in LivFgf21-/- mice when fed HC and HFHS diets but not when fed a LC diet. Loss of neuronal Klb also attenuated liraglutide-induced weight loss in mice fed HC or HFHS diets. CONCLUSIONS: Our findings support a novel role for a GLP-1R-FGF21 axis in regulating body weight in a dietary carbohydrate-dependent manner.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Liraglutide , Animals , Male , Mice , Carbohydrates , Diet, High-Fat , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Liraglutide/pharmacology , Mice, Inbred C57BL , Weight Loss
11.
Diabetologia ; 66(10): 1765-1779, 2023 10.
Article in English | MEDLINE | ID: mdl-36976349

ABSTRACT

Incretin hormones, principally glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1(GLP-1), potentiate meal-stimulated insulin secretion through direct (GIP + GLP-1) and indirect (GLP-1) actions on islet ß-cells. GIP and GLP-1 also regulate glucagon secretion, through direct and indirect pathways. The incretin hormone receptors (GIPR and GLP-1R) are widely distributed beyond the pancreas, principally in the brain, cardiovascular and immune systems, gut and kidney, consistent with a broad array of extrapancreatic incretin actions. Notably, the glucoregulatory and anorectic activities of GIP and GLP-1 have supported development of incretin-based therapies for the treatment of type 2 diabetes and obesity. Here we review evolving concepts of incretin action, focusing predominantly on GLP-1, from discovery, to clinical proof of concept, to therapeutic outcomes. We identify established vs uncertain mechanisms of action, highlighting biology conserved across species, while illuminating areas of active investigation and uncertainty that require additional clarification.


Subject(s)
Diabetes Mellitus, Type 2 , Incretins , Humans , Incretins/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/metabolism , Gastric Inhibitory Polypeptide/metabolism , Biology
12.
Nat Rev Cardiol ; 20(7): 463-474, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36977782

ABSTRACT

Type 2 diabetes mellitus (T2DM) and obesity are metabolic disorders characterized by excess cardiovascular risk. Glucagon-like peptide 1 (GLP1) receptor (GLP1R) agonists reduce body weight, glycaemia, blood pressure, postprandial lipaemia and inflammation - actions that could contribute to the reduction of cardiovascular events. Cardiovascular outcome trials (CVOTs) have demonstrated that GLP1R agonists reduce the rates of major adverse cardiovascular events in patients with T2DM. Separate phase III CVOTs of GLP1R agonists are currently being conducted in people living with heart failure with preserved ejection fraction and in those with obesity. Mechanistically, GLP1R is expressed at low levels in the heart and vasculature, raising the possibility that GLP1 might have both direct and indirect actions on the cardiovascular system. In this Review, we summarize the data from CVOTs of GLP1R agonists in patients with T2DM and describe the actions of GLP1R agonists on the heart and blood vessels. We also assess the potential mechanisms that contribute to the reduction in major adverse cardiovascular events in individuals treated with GLP1R agonists and highlight the emerging cardiovascular biology of novel GLP1-based multi-agonists currently in development. Understanding how GLP1R signalling protects the heart and blood vessels will optimize the therapeutic use and development of next-generation GLP1-based therapies with improved cardiovascular safety.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/adverse effects , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor/agonists , Obesity , Cardiovascular System/metabolism , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/drug therapy
13.
bioRxiv ; 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36711605

ABSTRACT

Glucagon-like peptide-1 receptor (GLP-1R) agonists and fibroblast growth factor 21 (FGF21) confer similar metabolic benefits. Studies report that GLP-1RA induce FGF21. Here, we investigated the mechanisms engaged by the GLP-1R agonist liraglutide to increase FGF21 levels and the metabolic relevance of liraglutide-induced FGF21. We show that liraglutide increases FGF21 levels via neuronal GLP-1R activation. We also demonstrate that lack of liver Fgf21 expression confers partial resistance to liraglutide-induced weight loss. Since FGF21 reduces carbohydrate intake, we tested whether the contribution of FGF21 to liraglutide-induced weight loss is dependent on dietary carbohydrate content. In control and liver Fgf21 knockout (Liv Fgf21 -/- ) mice fed calorically matched diets with low- (LC) or high-carbohydrate (HC) content, we found that only HC-fed Liv Fgf21 -/- mice were resistant to liraglutide-induced weight loss. Similarly, liraglutide-induced weight loss was partially impaired in Liv Fgf21 -/- mice fed a high-fat, high-sugar (HFHS) diet. Lastly, we show that loss of neuronal ß-klotho expression also diminishes liraglutide-induced weight loss in mice fed a HC or HFHS diet, indicating that FGF21 mediates liraglutide-induced weight loss via neuronal FGF21 action. Our findings support a novel role for a GLP-1R-FGF21 axis in regulating body weight in the presence of high dietary carbohydrate content.

14.
Nat Rev Endocrinol ; 19(4): 201-216, 2023 04.
Article in English | MEDLINE | ID: mdl-36509857

ABSTRACT

Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP1) exhibit incretin activity, meaning that they potentiate glucose-dependent insulin secretion. The emergence of GIP receptor (GIPR)-GLP1 receptor (GLP1R) co-agonists has fostered growing interest in the actions of GIP and GLP1 in metabolically relevant tissues. Here, we update concepts of how these hormones act beyond the pancreas. The actions of GIP and GLP1 on liver, muscle and adipose tissue, in the control of glucose and lipid homeostasis, are discussed in the context of plausible mechanisms of action. Both the GIPR and GLP1R are expressed in the central nervous system, wherein receptor activation produces anorectic effects enabling weight loss. In preclinical studies, GIP and GLP1 reduce atherosclerosis. Furthermore, GIPR and GLP1R are expressed within the heart and immune system, and GLP1R within the kidney, revealing putative mechanisms linking GIP and GLP1R agonism to cardiorenal protection. We interpret the clinical and mechanistic data obtained for different agents that enable weight loss and glucose control for the treatment of obesity and type 2 diabetes mellitus, respectively, by activating or blocking GIPR signalling, including the GIPR-GLP1R co-agonist tirzepatide, as well as the GIPR antagonist-GLP1R agonist AMG-133. Collectively, we update translational concepts of GIP and GLP1 action, while highlighting gaps, areas of uncertainty and controversies meriting ongoing investigation.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Humans , Glucagon-Like Peptide 1/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/physiology , Gastric Inhibitory Polypeptide/therapeutic use , Pancreas , Glucose , Receptors, G-Protein-Coupled , Weight Loss
15.
Proc Natl Acad Sci U S A ; 120(1): e2209815120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574660

ABSTRACT

The cellular prion protein (PrPC) converts to alternatively folded pathogenic conformations (PrPSc) in prion infections and binds neurotoxic oligomers formed by amyloid-ß α-synuclein, and tau. ß-Endoproteolysis, which splits PrPC into N- and C-terminal fragments (N2 and C2, respectively), is of interest because a protease-resistant, C2-sized fragment (C2Sc) accumulates in the brain during prion infections, seemingly comprising the majority of PrPSc at disease endpoint in mice. However, candidates for the underlying proteolytic mechanism(s) remain unconfirmed in vivo. Here, a cell-based screen of protease inhibitors unexpectedly linked type II membrane proteins of the S9B serine peptidase subfamily to PrPC ß-cleavage. Overexpression experiments in cells and assays with recombinant proteins confirmed that fibroblast activation protein (FAP) and its paralog, dipeptidyl peptidase-4 (DPP4), cleave directly at multiple sites within PrPC's N-terminal domain. For wild-type mouse and human PrPC substrates expressed in cells, the rank orders of activity were human FAP ~ mouse FAP > mouse DPP4 > human DPP4 and human FAP > mouse FAP > mouse DPP4 >> human DPP4, respectively. C2 levels relative to total PrPC were reduced in several tissues from FAP-null mice, and, while knockout of DPP4 lacked an analogous effect, the combined DPP4/FAP inhibitor linagliptin, but not the FAP-specific inhibitor SP-13786, reduced C2Sc and total PrPSc levels in two murine cell-based models of prion infections. Thus, the net activity of the S9B peptidases FAP and DPP4 and their cognate inhibitors/modulators affect the physiology and pathogenic potential of PrPC.


Subject(s)
PrPC Proteins , Prion Diseases , Prions , Mice , Animals , Humans , Prion Proteins/genetics , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Prions/chemistry , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Peptide Hydrolases , Fibroblasts/metabolism , Prion Diseases/metabolism , PrPC Proteins/chemistry
16.
Endocr Rev ; 44(1): 14-32, 2023 01 12.
Article in English | MEDLINE | ID: mdl-35907261

ABSTRACT

Glucagon-like peptide-1 (GLP-1) controls islet hormone secretion, gut motility, and body weight, supporting development of GLP-1 receptor agonists (GLP-1RA) for the treatment of type 2 diabetes (T2D) and obesity. GLP-1RA exhibit a favorable safety profile and reduce the incidence of major adverse cardiovascular events in people with T2D. Considerable preclinical data, supported by the results of clinical trials, link therapy with GLP-RA to reduction of hepatic inflammation, steatosis, and fibrosis. Mechanistically, the actions of GLP-1 on the liver are primarily indirect, as hepatocytes, Kupffer cells, and stellate cells do not express the canonical GLP-1R. GLP-1RA reduce appetite and body weight, decrease postprandial lipoprotein secretion, and attenuate systemic and tissue inflammation, actions that may contribute to attenuation of metabolic-associated fatty liver disease (MAFLD). Here we discuss evolving concepts of GLP-1 action that improve liver health and highlight evidence that links sustained GLP-1R activation in distinct cell types to control of hepatic glucose and lipid metabolism, and reduction of experimental and clinical nonalcoholic steatohepatitis (NASH). The therapeutic potential of GLP-1RA alone, or in combination with peptide agonists, or new small molecule therapeutics is discussed in the context of potential efficacy and safety. Ongoing trials in people with obesity will further clarify the safety of GLP-1RA, and pivotal studies underway in people with NASH will define whether GLP-1-based medicines represent effective and safe therapies for people with MAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide 1/therapeutic use , Glucagon-Like Peptide 1/metabolism , Obesity/drug therapy , Inflammation , Hypoglycemic Agents/therapeutic use
17.
Mol Metab ; 66: 101641, 2022 12.
Article in English | MEDLINE | ID: mdl-36396031

ABSTRACT

OBJECTIVES: Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce the rates of major cardiovascular events, including myocardial infarction in people with type 2 diabetes, and decrease infarct size while preserving ventricular function in preclinical studies. Nevertheless, the precise cellular sites of GLP-1R expression that mediate the cardioprotective actions of GLP-1 in the setting of ischemic cardiac injury are uncertain. METHODS: Publicly available single cell RNA sequencing (scRNA-seq) datasets on mouse and human heart cells were analyzed for Glp1r/GLP1R expression. Fluorescent activated cell sorting was used to localize Glp1r expression in cell populations from the mouse heart. The importance of endothelial and hematopoietic cells for the cardioprotective response to liraglutide in the setting of acute myocardial infarction (MI) was determined by inactivating the Glp1r in Tie2+ cell populations. Cardiac gene expression profiles regulated by liraglutide were examined using RNA-seq to interrogate mouse atria and both infarcted and non-infarcted ventricular tissue after acute coronary artery ligation. RESULTS: In mice, cardiac Glp1r mRNA transcripts were exclusively detected in endocardial cells by scRNA-seq. In contrast, analysis of human heart by scRNA-seq localized GLP1R mRNA transcripts to populations of atrial and ventricular cardiomyocytes. Moreover, very low levels of GIPR, GCGR and GLP2R mRNA transcripts were detected in the human heart. Cell sorting and RNA analyses detected cardiac Glp1r expression in endothelial cells (ECs) within the atria and ventricle in the ischemic and non-ischemic mouse heart. Transcriptional responses to liraglutide administration were not evident in wild type mouse ventricles following acute MI, however liraglutide differentially regulated genes important for inflammation, cardiac repair, cell proliferation, and angiogenesis in the left atrium, while reducing circulating levels of IL-6 and KC/GRO within hours of acute MI. Inactivation of the Glp1r within the Tie2+ cell expression domain encompassing ECs revealed normal cardiac structure and function, glucose homeostasis and body weight in Glp1rTie2-/- mice. Nevertheless, the cardioprotective actions of liraglutide to reduce infarct size, augment ejection fraction, and improve survival after experimental myocardial infarction (MI), were attenuated in Glp1rTie2-/- mice. CONCLUSIONS: These findings identify the importance of the murine Tie2+ endothelial cell GLP-1R as a target for the cardioprotective actions of GLP-1R agonists and support the importance of the atrial and ventricular endocardial GLP-1R as key sites of GLP-1 action in the ischemic mouse heart. Hitherto unexplored species-specific differences in cardiac GLP-1R expression challenge the exclusive use of mouse models for understanding the mechanisms of GLP-1 action in the normal and ischemic human heart.


Subject(s)
Atrial Fibrillation , Glucagon-Like Peptide-1 Receptor , Liraglutide , Myocardial Infarction , Animals , Humans , Mice , Diabetes Mellitus, Type 2/drug therapy , Endothelial Cells/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/drug effects , Glucagon-Like Peptide-1 Receptor/metabolism , Liraglutide/pharmacology , Myocardial Infarction/drug therapy , RNA, Messenger , Disease Models, Animal , Receptor, TIE-2/metabolism
18.
Mol Metab ; 66: 101633, 2022 12.
Article in English | MEDLINE | ID: mdl-36356832

ABSTRACT

OBJECTIVE: Obesity and its associated comorbidities represent a global health challenge with a need for well-tolerated, effective, and mechanistically diverse pharmaceutical interventions. Oxyntomodulin is a gut peptide that activates the glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R) and reduces bodyweight by increasing energy expenditure and reducing energy intake in humans. Here we describe the pharmacological profile of the novel glucagon receptor (GCGR)/GLP-1 receptor (GLP-1R) dual agonist BI 456906. METHODS: BI 456906 was characterized using cell-based in vitro assays to determine functional agonism. In vivo pharmacological studies were performed using acute and subchronic dosing regimens to demonstrate target engagement for the GCGR and GLP-1R, and weight lowering efficacy. RESULTS: BI 456906 is a potent, acylated peptide containing a C18 fatty acid as a half-life extending principle to support once-weekly dosing in humans. Pharmacological doses of BI 456906 provided greater bodyweight reductions in mice compared with maximally effective doses of the GLP-1R agonist semaglutide. BI 456906's superior efficacy is the consequence of increased energy expenditure and reduced food intake. Engagement of both receptors in vivo was demonstrated via glucose tolerance, food intake, and gastric emptying tests for the GLP-1R, and liver nicotinamide N-methyltransferase mRNA expression and circulating biomarkers (amino acids, fibroblast growth factor-21) for the GCGR. The dual activity of BI 456906 at the GLP-1R and GCGR was supported using GLP-1R knockout and transgenic reporter mice, and an ex vivo bioactivity assay. CONCLUSIONS: BI 456906 is a potent GCGR/GLP-1R dual agonist with robust anti-obesity efficacy achieved by increasing energy expenditure and decreasing food intake.


Subject(s)
Glucagon-Like Peptide 1 , Receptors, Glucagon , Animals , Humans , Mice , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Obesity/drug therapy , Obesity/metabolism , Oxyntomodulin/pharmacology , Peptides/pharmacology , Peptides/metabolism , Receptors, Glucagon/metabolism
19.
Mol Metab ; 65: 101586, 2022 11.
Article in English | MEDLINE | ID: mdl-36055579

ABSTRACT

OBJECTIVE: The gut hormone glucose-dependent insulinotropic polypeptide (GIP) stimulates beta cell function and improves glycemia through its incretin actions. GIP also regulates endothelial function and suppresses adipose tissue inflammation through control of macrophage activity. Activation of the GIP receptor (GIPR) attenuates experimental atherosclerosis and inflammation in mice, however whether loss of GIPR signaling impacts the development of atherosclerosis is uncertain. METHODS: Atherosclerosis and related metabolic phenotypes were studied in Apoe-/-:Gipr-/- mice and in Gipr+/+ and Gipr-/- mice treated with an adeno-associated virus expressing PCSK9 (AAV-PCSK9). Bone marrow transplantation (BMT) studies were carried out using donor marrow from Apoe-/-:Gipr-/-and Apoe-/-:Gipr+/+mice transplanted into Apoe-/-:Gipr-/- recipient mice. Experimental endpoints included the extent of aortic atherosclerosis and inflammation, body weight, glucose tolerance, and circulating lipid levels, the proportions and subsets of circulating leukocytes, and tissue gene expression profiles informing lipid and glucose metabolism, and inflammation. RESULTS: Body weight was lower, circulating myeloid cells were reduced, and glucose tolerance was not different, however, aortic atherosclerosis was increased in Apoe-/-:Gipr-/- mice and trended higher in Gipr-/- mice with atherosclerosis induced by AAV-PCSK9. Levels of mRNA transcripts for genes contributing to inflammation were increased in the aortae of Apoe-/-:Gipr-/- mice and expression of a subset of inflammation-related hepatic genes were increased in Gipr-/- mice treated with AAV-PCSK9. BMT experiments did not reveal marked atherosclerosis, failing to implicate bone marrow derived GIPR + cells in the control of atherosclerosis or aortic inflammation. CONCLUSIONS: Loss of the Gipr in mice results in increased aortic atherosclerosis and enhanced inflammation in aorta and liver, despite reduced weight gain and preserved glucose homeostasis. These findings extend concepts of GIPR in the suppression of inflammation-related pathophysiology beyond its classical incretin role in the control of metabolism.


Subject(s)
Atherosclerosis , Proprotein Convertase 9 , Animals , Mice , Apolipoproteins E/genetics , Atherosclerosis/genetics , Blood Glucose , Body Weight , Gastric Inhibitory Polypeptide/metabolism , Incretins , Inflammation/metabolism , Receptors, G-Protein-Coupled , Receptors, Gastrointestinal Hormone , RNA, Messenger
20.
Cell Metab ; 34(10): 1514-1531.e7, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36027914

ABSTRACT

Gut intraepithelial lymphocytes (IELs) are thought to calibrate glucagon-like peptide 1 (GLP-1) bioavailability, thereby regulating systemic glucose and lipid metabolism. Here, we show that the gut IEL GLP-1 receptor (GLP-1R) is not required for enteroendocrine L cell GLP-1 secretion and glucose homeostasis nor for the metabolic benefits of GLP-1R agonists (GLP-1RAs). Instead, the gut IEL GLP-1R is essential for the full effects of GLP-1RAs on gut microbiota. Moreover, independent of glucose control or weight loss, the anti-inflammatory actions of GLP-1RAs require the gut IEL GLP-1R to selectively restrain local and systemic T cell-induced, but not lipopolysaccharide-induced, inflammation. Such effects are mediated by the suppression of gut IEL effector functions linked to the dampening of proximal T cell receptor signaling in a protein-kinase-A-dependent manner. These data reposition key roles of the L cell-gut IEL GLP-1R axis, revealing mechanisms linking GLP-1R activation in gut IELs to modulation of microbiota composition and control of intestinal and systemic inflammation.


Subject(s)
Gastrointestinal Microbiome , Intraepithelial Lymphocytes , Blood Glucose , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor , Glucose/metabolism , Humans , Inflammation , Intestines , Intraepithelial Lymphocytes/metabolism , Receptors, Antigen, T-Cell
SELECTION OF CITATIONS
SEARCH DETAIL
...