Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35053620

ABSTRACT

The major tumor suppressor P53 (TP53) acts primarily as a transcription factor by activating or repressing subsets of its numerous target genes, resulting in different cellular outcomes (e.g., cell cycle arrest, apoptosis and senescence). P53-dependent gene regulation is linked to several aspects of chromatin remodeling; however, regulation of chromatin-modifying enzymes by P53 is poorly understood in hepatocarcinogenesis. Herein, we identified Helicase, lymphoid specific (HELLS), a major epigenetic regulator in liver cancer, as a strong and selective P53 repression target within the SNF2-like helicase family. The underlying regulatory mechanism involved P53-dependent induction of P21 (CDKN1A), leading to repression of Forkhead Box Protein M1 (FOXM1) that in turn resulted in downregulation of HELLS expression. Supporting our in vitro data, we found higher expression of HELLS in murine HCCs arising in a Trp53-/- background compared to Trp53+/+ HCCs as well as a strong and highly significant correlation between HELLS and FOXM1 expression in different HCC patient cohorts. Our data suggest that functional or mutational inactivation of P53 substantially contributes to overexpression of HELLS in HCC patients and indicates a previously unstudied aspect of P53's ability to suppress liver cancer formation.

2.
Cell Commun Signal ; 17(1): 159, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31783876

ABSTRACT

BACKGROUND: Members of the karyopherin superfamily serve as nuclear transport receptors/adaptor proteins and provide exchange of macromolecules between the nucleo- and cytoplasm. Emerging evidence suggests a subset of karyopherins to be dysregulated in hepatocarcinogenesis including karyopherin-α2 (KPNA2). However, the functional and regulatory role of KPNA2 in liver cancer remains incompletely understood. METHODS: Quantitative proteomics (LC-MS/MS, ~ 1750 proteins in total) was used to study changes in global protein abundance upon siRNA-mediated KPNA2 knockdown in HCC cells. Functional and mechanistic analyses included colony formation and 2D migration assays, co-immunoprecipitation (CoIP), chromatin immunoprecipitation (ChIP), qRT-PCR, immmunblotting, and subcellular fractionation. In vitro results were correlated with data derived from a murine HCC model and HCC patient samples (3 cohorts, n > 600 in total). RESULTS: The proteomic approach revealed the pro-tumorigenic, microtubule (MT) interacting protein stathmin (STMN1) among the most downregulated proteins upon KPNA2 depletion in HCC cells. We further observed that KPNA2 knockdown leads to reduced tumor cell migration and colony formation of HCC cells, which could be phenocopied by direct knockdown of stathmin. As the underlying regulatory mechanism, we uncovered E2F1 and TFDP1 as transport substrates of KPNA2 being retained in the cytoplasm upon KPNA2 ablation, thereby resulting in reduced STMN1 expression. Finally, murine and human HCC data indicate significant correlations of STMN1 expression with E2F1/TFPD1 and with KPNA2 expression and their association with poor prognosis in HCC patients. CONCLUSION: Our data suggest that KPNA2 regulates STMN1 by import of E2F1/TFDP1 and thereby provide a novel link between nuclear transport and MT-interacting proteins in HCC with functional and prognostic significance.


Subject(s)
E2F1 Transcription Factor/metabolism , Liver Neoplasms/genetics , Stathmin/genetics , Transcription Factor DP1/metabolism , alpha Karyopherins/metabolism , E2F1 Transcription Factor/genetics , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Signal Transduction/genetics , Stathmin/metabolism , Transcription Factor DP1/genetics , Tumor Cells, Cultured , alpha Karyopherins/genetics
3.
Nat Commun ; 10(1): 2147, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31089132

ABSTRACT

Cancer-relevant signalling pathways rely on bidirectional nucleocytoplasmic transport events through the nuclear pore complex (NPC). However, mechanisms by which individual NPC components (Nups) participate in the regulation of these pathways remain poorly understood. We discover by integrating large scale proteomics, polysome fractionation and a focused RNAi approach that Nup155 controls mRNA translation of p21 (CDKN1A), a key mediator of the p53 response. The underlying mechanism involves transcriptional regulation of the putative tRNA and rRNA methyltransferase FTSJ1 by Nup155. Furthermore, we observe that Nup155 and FTSJ1 are p53 repression targets and accordingly find a correlation between the p53 status, Nup155 and FTSJ1 expression in murine and human hepatocellular carcinoma. Our data suggest an unanticipated regulatory network linking translational control by and repression of a structural NPC component modulating the p53 pathway through its effectors.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cyclin-Dependent Kinase Inhibitor p21/genetics , Liver Neoplasms/pathology , Methyltransferases/genetics , Nuclear Pore Complex Proteins/metabolism , Nuclear Proteins/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Datasets as Topic , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/pathology , Methyltransferases/metabolism , Mice , Nuclear Pore Complex Proteins/genetics , Nuclear Proteins/metabolism , RNA, Small Interfering/metabolism
4.
Am J Pathol ; 187(2): 228-235, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27939741

ABSTRACT

Disruption of the tumor-suppressive p53 network is a key event in human malignancies, including primary liver cancer. In response to different types of stress, p53 mediates several antiproliferative cellular outcomes, such as cell cycle arrest, apoptosis, and senescence, by activation or repression of its target genes. Metabolic alterations initiating or being part of the p53 response have become an actively studied research area in the p53 field, with several aspects that still remain to be elucidated. Herein, we identified GMP synthetase (GMPS), a key enzyme of de novo purine biosynthesis, as an important p53 repression target using a large-scale proteomics approach. This p53-mediated repression of GMPS could be validated by immunoblotting in Sk-Hep1, HepG2, and HuH6 cells. Moreover, we found GMPS transcriptionally repressed in a p21-dependent manner and its repression maintained in the context of p53-mediated cellular senescence. More important, direct knockdown of GMPS by RNA interference resulted in reduced cell viability and was sufficient to trigger cellular senescence. Finally, by comparing murine hepatocellular carcinomas, which developed in p53 wild-type (+/+) versus p53 null (-/-) mice, we observed higher GMPS expression in the latter, supporting the in vivo relevance of our findings. We conclude that repression of GMPS by p53 through p21 is a functionally relevant part of the p53-mediated senescence program limiting tumor cell growth in liver cancer.


Subject(s)
Carbon-Nitrogen Ligases/metabolism , Carcinoma, Hepatocellular/metabolism , Cellular Senescence/physiology , Liver Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Cell Line, Tumor , Chromatography, Liquid , Gene Expression Regulation, Neoplastic/physiology , Humans , Immunoblotting , Mice , Proteomics , Real-Time Polymerase Chain Reaction , Tandem Mass Spectrometry , Transfection
5.
J Cancer ; 7(5): 555-68, 2016.
Article in English | MEDLINE | ID: mdl-27053954

ABSTRACT

BACKGROUND: Malignant melanoma is an aggressive type of skin cancer with high risk for metastasis and chemoresistance. Disruption of tightly regulated processes such as cell cycle, cell adhesion, cell differentiation and cell death are predominant in melanoma development. So far, conventional treatment options have been insufficient to treat metastatic melanoma and survival rates are poor. Anthraquinone compounds have been reported to have anti-tumorigenic potential by DNA-interaction, promotion of apoptosis and suppression of proliferation in various cancer cells. METHODS: In the current study, the racemic tetrahydroanthraquinone derivative (±)-4-deoxyaustrocortilutein (4-DACL) was synthesized and the cytotoxic activity against melanoma cells and melanoma spheroids determined by CellTiter-Blue viability Assay and phase contrast microscopy. Generation of reactive oxygen species (ROS) was determined with CellROX Green and Deep Red Reagent kit and microplate-based fluorometry. Luciferase reporter gene assays for nuclear factor kappa B (NF-κB) and p53 activities and western blotting analysis were carried out to detect the expression of anti-proliferative or pro-apoptotic (p53, p21, p27, MDM2, and GADD45M) and anti-apoptotic (p65, IκB-α, IKK) proteins. Cell cycle distribution and apoptosis rate were detected by flow cytometry, the morphological changes visualized by fluorescence microscopy and the activation of different caspase cascades distinguished by Caspase Glo 3/7, 8 and 9 Assays. RESULTS: We demonstrated that 4-DACL displayed high activity against different malignant melanoma cells and melanoma spheroids and only low toxicity to melanocytes and other primary cells. In particular, 4-DACL treatment induced mitochondrial ROS, reduced NF-κB signaling activity and increased up-regulation of the cell cycle inhibitors cyclin-dependent kinase inhibitor p21 (p21(WAF1/Cip1)) and the tumor suppressor protein p53 in a dose-dependent manner, which was accompanied by decreased cell proliferation and apoptosis via the intrinsic pathway. CONCLUSION: According to these results, we suggest that 4-DACL may be a promising therapeutic agent for the treatment of malignant melanoma.

6.
Oncotarget ; 7(16): 22883-92, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27015362

ABSTRACT

Importins and exportins represent an integral part of the nucleocytoplasmic transport machinery with fundamental importance for eukaryotic cell function. A variety of malignancies including hepatocellular carcinoma (HCC) show de-regulation of nuclear transport factors such as overexpression of the exportin Cellular Apoptosis Susceptibility (CAS). The functional implications of CAS in hepatocarcinogenesis remain, however, poorly understood. Here we integrated proteomics, transcriptomics and functional assays with patient data to further characterize the role of CAS in HCC. By analyzing ~ 1700 proteins using quantitative mass spectrometry in HCC cells we found that CAS depletion by RNAi leads to de-regulation of integrins, particularly down-regulation of integrin ß1. Consistent with this finding, CAS knockdown resulted in substantially reduced migration and invasion of HCC cell lines as analyzed by 2D 'scratch' and invasion chamber assays, respectively. Supporting the potential in vivo relevance, high expression levels of CAS in HCC tissue samples were associated with macroangioinvasion and poorer patient outcome. Our data suggest a previously unanticipated link between CAS and integrin signaling which correlates with an aggressive HCC phenotype.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cellular Apoptosis Susceptibility Protein/metabolism , Integrin beta1/metabolism , Liver Neoplasms/pathology , Cell Movement/physiology , Gene Expression Regulation, Neoplastic/physiology , Humans , Neoplasm Invasiveness/pathology
7.
Int J Oncol ; 48(4): 1679-87, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26892809

ABSTRACT

Thyroid carcinoma is among the most common malignant endocrine neoplasms with a rising incidence. Genetic alterations occurring in thyroid cancer frequently affect the RAS/RAF/MEK/ERK-pathway such as the oncogenic, kinase-activating BRAF(V600E) mutation. Nuclear transport receptors including importins and exportins represent an important part of the nuclear transport machinery providing nucleo-cytoplasmic exchange of macromolecules. The role of nuclear transport receptors in the development and progression of thyroid carcinomas is largely unknown. Here, we studied the expression and function of the exportin cellular apoptosis susceptibility (CAS) in thyroid carcinogenesis and its link to the BRAF(V600E) mutation. By using immunohistochemistry (IHC) we found significantly increased IHC scores of CAS in primary papillary (PTC) and medullary (MTC), but not in follicular (FTC) thyroid carcinoma compared to non-tumorous (NT) thyroid tissue. Interestingly, metastases of the aforementioned subtypes including FTC showed a strong CAS positivity. Among PTCs we observed that CAS immunoreactivity was significantly higher in the tumors harboring the BRAF(V600E) mutation. Furthermore, depletion of CAS by RNAi in the BRAF(V600E)-positive PTC cell line B-CPAP led to reduced tumor cell growth measured by crystal violet assays. This phenotype could be attributed to reduced proliferation and increased cell death as assayed by BrdU ELISAs and immunoblotting for PARP-cleavage, respectively. Finally, we found additive effects of CAS siRNA and vemurafenib treatment in B-CPAP cells. Collectively, these data suggest that CAS overexpression in thyroid carcinoma depends on the subtype and the disease stage. Our findings also indicate that CAS maintains PTC cell proliferation and survival. Targeting CAS could represent a potential therapeutic approach particularly in combination with BRAF inhibitors such as vemurafenib in BRAF(V600E)-positive tumors.


Subject(s)
Carcinoma, Papillary/pathology , Cellular Apoptosis Susceptibility Protein/metabolism , Mutation , Proto-Oncogene Proteins B-raf/genetics , Thyroid Neoplasms/pathology , Up-Regulation , Adult , Aged , Aged, 80 and over , Carcinoma, Papillary/genetics , Carcinoma, Papillary/metabolism , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Neoplasm Metastasis , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism
8.
EPMA J ; 5(1): 20, 2014.
Article in English | MEDLINE | ID: mdl-26269723

ABSTRACT

The analysis of biomarkers in saliva as a clinical application offers an attractive, simple and rapid diagnostic tool for the short- and long-term monitoring of pathological disorders and drug therapy. The collection of saliva, either in the pure or in its fractionated form, is a relatively easy and non-invasive procedure that is not harmful to the patients and has no complications at all. However, the fluid collection must be clearly defined due to variations in saliva composition, flow rate and day-to-day variability. In order to minimise possible variations, saliva from five patients without squamous cell carcinoma (SCC) pathology and five with suspicion of oral squamous carcinoma (OSCC) were collected and matched at different days and analysed by two-dimensional polyacrylamide gel electrophoresis (2DE-PAGE). Approximately 800 spots were identified, corresponding to 151 different gene products. The list of identified proteins includes a large number of structural proteins like keratins, keratin subunits, enzymes and enzyme inhibitors, cytokines, immunoglobulins as well as amylase and other salivary specific glycoproteins. The majority of proteins that are localised in oral epithelia cells were found as unsolved debris in saliva. One of the identified proteins was significantly overexpressed in OSCC and was selected for further validation by Western blot analysis.

9.
EPMA J ; 4(1): 7, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23442211

ABSTRACT

Since the emergence of the so-called omics technology, thousands of putative biomarkers have been identified and published, which have dramatically increased the opportunities for developing more effective therapeutics. These opportunities can have profound benefits for patients and for the economics of healthcare. However, the transfer of biomarkers from discovery to clinical practice is still a process filled with lots of pitfalls and limitations, mostly limited by structural and scientific factors. To become a clinically approved test, a potential biomarker should be confirmed and validated using hundreds of specimens and should be reproducible, specific and sensitive. Besides the lack of quality in biomarker validation, a number of other key issues can be identified and should be addressed. Therefore, the aim of this article is to discuss a series of interpretative and practical issues that need to be understood and resolved before potential biomarkers become a clinically approved test or are already on the diagnostic market. Some of these issues are shortly discussed here.

SELECTION OF CITATIONS
SEARCH DETAIL
...