Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 63(15): 8088-8113, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32551603

ABSTRACT

The serine protease factor XI (FXI) is a prominent drug target as it holds promise to deliver efficacious anticoagulation without an enhanced risk of major bleeds. Several efforts have been described targeting the active form of the enzyme, FXIa. Herein, we disclose our efforts to identify potent, selective, and orally bioavailable inhibitors of FXIa. Compound 1, identified from a diverse library of internal serine protease inhibitors, was originally designed as a complement factor D inhibitor and exhibited submicromolar FXIa activity and an encouraging absorption, distribution, metabolism, and excretion (ADME) profile while being devoid of a peptidomimetic architecture. Optimization of interactions in the S1, S1ß, and S1' pockets of FXIa through a combination of structure-based drug design and traditional medicinal chemistry led to the discovery of compound 23 with subnanomolar potency on FXIa, enhanced selectivity over other coagulation proteases, and a preclinical pharmacokinetics (PK) profile consistent with bid dosing in patients.


Subject(s)
Factor XIa/antagonists & inhibitors , Factor XIa/genetics , Factor Xa Inhibitors/administration & dosage , Factor Xa Inhibitors/chemistry , Administration, Oral , Amino Acid Sequence , Animals , Biological Availability , Dogs , Drug Evaluation, Preclinical/methods , Humans , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
2.
Angew Chem Int Ed Engl ; 56(5): 1294-1297, 2017 01 24.
Article in English | MEDLINE | ID: mdl-27981705

ABSTRACT

CSN5 is the zinc metalloprotease subunit of the COP9 signalosome (CSN), which is an important regulator of cullin-RING E3 ubiquitin ligases (CRLs). CSN5 is responsible for the cleavage of NEDD8 from CRLs, and blocking deconjugation of NEDD8 traps the CRLs in a hyperactive state, thereby leading to auto-ubiquitination and ultimately degradation of the substrate recognition subunits. Herein, we describe the discovery of azaindoles as a new class of CSN5 inhibitors, which interact with the active-site zinc ion of CSN5 through an unprecedented binding mode. The best compounds inhibited CSN5 with nanomolar potency, led to degradation of the substrate recognition subunit Skp2 in cells, and reduced the viability of HCT116 cells.


Subject(s)
COP9 Signalosome Complex/antagonists & inhibitors , Indoles/metabolism , Zinc/metabolism , Binding Sites , COP9 Signalosome Complex/genetics , COP9 Signalosome Complex/metabolism , Catalytic Domain , Cell Proliferation/drug effects , Crystallography, X-Ray , Fluorescence Resonance Energy Transfer , HCT116 Cells , Humans , Indoles/chemistry , Indoles/pharmacology , Molecular Docking Simulation , NEDD8 Protein/chemistry , NEDD8 Protein/metabolism , Protein Subunits/antagonists & inhibitors , Protein Subunits/genetics , Protein Subunits/metabolism , RNA Interference , RNA, Small Interfering/metabolism , S-Phase Kinase-Associated Proteins/chemistry , S-Phase Kinase-Associated Proteins/metabolism , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...