Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 26(17): 175601, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25854751

ABSTRACT

Copper oxide nanoparticle inks sintered and reduced by intense pulsed light (IPL) are an inexpensive means to produce conductive patterns on a number of substrates. However, the oxidation and diffusion characteristics of copper are issues that must be resolved before it can be considered as a viable solution. Nickel can provide a degree of oxidation protection and act as a barrier for the diffusion of copper. In the present study we have for the first time synthesized copper oxide with an encapsulating nickel oxide nanostructure using a solution phase synthesis process in the presence of a surfactant at room temperature. The room temperature process enables us to easily prevent the formation of alloys at the copper-nickel interface. The synthesis results in a simple technique (easily commercializable, tested at a 10 g scale) with highly controllable layer thicknesses on a 20 nm copper oxide nanoparticle. These Cu(2)O@NiO dispersions were then directly deposited onto substrates and sintered/reduced using an IPL source. The sintering technique produces a highly conductive film with very short processing times. Films have been deposited onto silicon, and the copper-nickel structure has shown a lower copper diffusion. The nanostructures and resulting films were characterized using electron and x-ray spectroscopy, and the films' resistivity was measured.

2.
Nanotechnology ; 20(46): 465701, 2009 Nov 18.
Article in English | MEDLINE | ID: mdl-19843986

ABSTRACT

Functionalizing nanoparticle surfaces is essential for achieving homogeneous dispersions of monodisperse particles in polymer nanocomposites for successful utilization in engineering applications. Functionalization reduces the surface energy of the nanoparticles, thereby limiting the tendency to agglomerate. Moreover, reactive groups on the surface can also participate in the polymerization, creating covalent bonds between the inorganic and organic phases. In this paper, a fluidized bed inductively coupled plasma (FB-ICP) reactor is used to break apart the agglomerates and functionalize commercial TiO2 nanoparticle powders in a batch of several grams. The fluidized bed could be implemented into a continuous flow reactor, potentially making this a viable method to treat larger quantities of commercial powders. The particles are treated with acrylic acid (AA) and tetraethylorthosilicate (TEOS) plasma and the functionalized particles were collected separately from bulk powder. High resolution transmission electron microscopy (HRTEM) analysis showed that the particles were coated uniformly with polymer coatings with thicknesses around a few nanometers. Fourier-transformed infrared spectroscopy (FTIR) studies of the polymer-coated particles showed the presence of different functional groups (poly-acrylic acid/siloxane) similar to that present in the bulk films. The dispersion behavior of the TiO2 nanoparticles showed much improvement with reduced agglomerate size.

SELECTION OF CITATIONS
SEARCH DETAIL
...