Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Chemistry ; 30(21): e202303508, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38369596

ABSTRACT

Mastering graphene preparation is an essential step to its integration into practical applications. For large-scale purposes, full graphite exfoliation appears as a suitable route for graphene production. However, it requires overpowering attractive van der Waals forces demanding large energy input, with the risk of introducing defects in the material. This difficulty can be overcome by using graphite intercalation compounds (GICs) as starting material. The greater inter-sheet separation in GICs (compared with graphite) allows the gentler exfoliation of soluble graphenide (reduced graphene) flakes. A solvent exchange strategy, accompanied by the oxidation of graphenide to graphene, can be implemented to produce stable aqueous graphene dispersions (Eau de graphene, EdG), which can be readily incorporated into many processes or materials. In this work, we prove that electrostatic forces are responsible for the stability of fully exfoliated graphene in water, and explore the influence of the oxidation and solvent exchange procedures on the quality and stability of EdG. We show that the amount of defects in graphene is limited if graphenide oxidation is carried out before exposing the material to water, and that gas removal of water before the incorporation of pre-oxidized graphene is advantageous for the long-term stability of EdG.

2.
Macromolecules ; 56(6): 2246-2257, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37013084

ABSTRACT

We have investigated the formation of stable clusters of poly(N-isopropylacrylamide) (pNIPAM) chains in water at temperatures above the lower critical solution temperature (LCST), induced by the presence of sodium tetraphenylborate, NaPh4B. The hydrophobic Ph4B- ions interact strongly with the pNIPAM chains, providing them with a net effective negative charge, which leads to the stabilization of pNIPAM clusters for temperatures above the LCST, with a mean cluster size that depends non-monotonically on salt concentration. Combining experiments with physical modeling at the mesoscopic level and atomistic molecular dynamic simulations, we show that this effect is caused by the interplay between the hydrophobic attraction between pNIPAM chains and the electrostatic repulsion induced by the associated Ph4B- ions. These results provide insight on the significance of weak associative anion-polymer interaction driven by hydrophobic interaction and how this anionic binding can prevent macroscopic phase separation. Harvesting the competition between attractive hydrophobic and repulsive electrostatic interaction opens avenues for the dynamic control of the formation of well-calibrated polymer microparticles.

3.
Soft Matter ; 16(33): 7727-7738, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32735003

ABSTRACT

We have studied the combined influence of pH and ionic strength on the properties of brushes of a weak polyion, poly(acrylic acid), in conditions of grafting density close to the mushroom-brush crossover. By combining atomic force microscopy AFM and quartz crystal microbalance, we show that at low ionic strengths the conformational change of grafted polyions is non-monotonic with increasing pH due to the counterintuitive variation of the ionization degree. Thus, reentrant swelling of the polymer chains is observed with increasing pH. This effect is more important at low polymer grafting densities, when it is accompanied by in-plane heterogeneous distribution at intermediate pH values. In addition, we observed self-assembly on the polymer brush (formation of holes and islands) at pH values below pKa, due to the short-range attractive interaction between uncharged grafted chains. The sensitivity of the ionization of grafted chains to the physicochemical environment was also studied by measuring the interaction force between a silica tip and polymer brushes by atomic force microscopy. The dependence of the ionization of polyions on the presence of the tip points toward important charge regulation effects, in particular at pH values corresponding to partial ionization of the polyion.

4.
Phys Rev Lett ; 125(5): 056001, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32794889

ABSTRACT

Two oppositely charged surfaces separated by a dielectric medium attract each other. In contrast we observe a strong repulsion between two plates of a capacitor that is filled with an aqueous electrolyte upon application of an alternating potential difference between the plates. This long-range force increases with the ratio of diffusion coefficients of the ions in the medium and reaches a steady state after a few minutes, which is much larger than the millisecond timescale of diffusion across the narrow gap. The repulsive force, an order of magnitude stronger than the electrostatic attraction observed in the same setup in air, results from the increase in osmotic pressure as a consequence of the field-induced excess of cations and anions due to lateral transport from adjacent reservoirs.

5.
Langmuir ; 35(48): 15723-15728, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31566381

ABSTRACT

We describe how a long-range repulsive interaction can surreptitiously modify the effective geometry of approaching compliant surfaces, with significant consequences on friction. We investigated the behavior under shear and compression of mica surfaces coated with poly(N-isopropylacrylamide) pNIPAM-based cationic microgels. We show that local surface deformations as small as a few nanometers must be considered to understand the response of such surfaces under compression and shear, in particular when the range of action of normal and friction forces are significantly different, as is often the case for macromolecular lubrication. Under these conditions, a subtle interplay between normal forces and surface compliance may significantly reduce friction increment by limiting the minimum approach of the surfaces under pressure. We found that stiffening of compressed microgels confined in the region of closest approach make it increasingly difficult to reduce the gap between the mica surfaces, limiting the deformation of microgels distant from the contact apex and their contribution to global friction while increasing the effective contact radius. These findings reveal a simple mechanism for a robust control of lubrication: by properly tuning the stiffness and geometry of the interacting bodies, for an ad hoc long-range interaction, the growth of friction with applied normal load can be significantly hindered. Thus, substrate compliance is as significant as surface interaction in the design of low friction, long life tribological systems.

6.
Langmuir ; 35(48): 15605-15613, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31408351

ABSTRACT

In this work, we have investigated the behavior under shear and compression of mica surfaces coated with poly(N-isopropylacrylamide) cationic microgels. We have observed the emergence of velocity dependent, shear-induced normal forces, which can be large enough to entrain a fluid film that separates the surfaces out of contact, driving the dynamic system from conditions of boundary to hydrodynamic lubrication. By implementing a feedback-loop control on the surface separation, we were able to quantify the magnitude of the lift force as a function of the surface separation and driving speed. Our results illustrate how elastohydrodynamic effects can play an important role in the lubrication of compliant surfaces, providing pathways for control of friction and wear.

7.
Soft Matter ; 14(38): 7818-7828, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30255921

ABSTRACT

We have studied the effect of different ions belonging to the extended Hofmeister series on the thermosensitive polymer poly(N-isopropylacrylamide) (PNIPAM), by combining Differential Scanning Calorimetry (DSC) and Dynamic Light Scattering (DLS). The variations in the lower critical solution temperature (TLCS) and enthalpy change during PNIPAM phase separation evidence the importance of considering both hydration and hydrophobicity to explain the interaction of ions with interfaces. The results obtained in the presence of inorganic ions can be explained by the tendency of water molecules to preferentially hydrate the PNIPAM chains or the ions, depending on the kosmotropic (highly hydrated) or chaotropic (poorly hydrated) character of the ions. On the contrary, tetraphenyl organic ions (Ph4B- and Ph4As+) interact with the hydrophobic moieties of PNIPAM chains, inducing a significant reduction of the TLCS. DLS results show that the aggregation state of PNIPAM above the TLCS is also strongly influenced by the presence of ions. While macroscopic phase separation (formation of a polymer-rich phase insoluble in water) was apparent in the presence of inorganic ions, we observed the formation of submicron PNIPAM aggregates at temperatures above the TLCS in the presence of the hydrophobic ions. Kinetically arrested monodisperse PNIPAM nanoparticles were formed in the presence of the Ph4B- anion, while a rather polydisperse distribution of particle sizes was observed in the presence of Ph4As+. These results show that ionic specificity influences both the static (thermodynamic) and dynamic (kinetically controlled aggregation) states of PNIPAM in an aqueous environment.

8.
ACS Nano ; 12(8): 8606-8615, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30088916

ABSTRACT

The main hurdle preventing the widespread use of single-walled carbon nanotubes remains the lack of methods with which to produce formulations of pristine, unshortened, unfunctionalized, individualized single-walled carbon nanotubes, thus preserving their extraordinary properties. In particular, sonication leads to shortening, which is detrimental to percolation properties (electrical, thermal, mechanical, etc.). Using reductive dissolution and transfer into degassed water, open-ended, water-filled nanotubes can be dispersed as individualized nanotubes in water-dimethyl sulfoxide mixtures, avoiding the use of sonication and surfactant. Closed nanotubes, however, aggregate immediately upon contact with water. Photoluminescence and absorption spectroscopy both point out a very high degree of individualization while retaining lengths of several microns. The resulting transparent conducting films are 1 order of magnitude more conductive than surfactant-based blanks at equal transmittance.

9.
Materials (Basel) ; 10(8)2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28767100

ABSTRACT

Here, we study films of proteins over planar surfaces and protein-coated microspheres obtained from the adsorption of three different proteins ( ß -casein, ß -lactoglobulin and bovine serum albumin (BSA)). The investigation of protein films in planar surfaces is performed by combining quartz crystal microbalance (QCM) and atomic force microscopy (AFM) measurements with all-atomic molecular dynamics (MD) simulations. We found that BSA and ß -lactoglobulin form compact monolayers, almost without interstices between the proteins. However, ß -casein adsorbs forming multilayers. The study of the electrokinetic mobility of protein-coated latex microspheres shows substantial condensation of ions from the buffer over the complexes, as predicted from ion condensation theories. The electrokinetic behavior of the latex-protein complexes is dominated by the charge of the proteins and the phenomenon of ion condensation, whereas the charge of the latex colloids plays only a minor role.

13.
Langmuir ; 33(20): 4996-5005, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28497970

ABSTRACT

Polymer coatings are commonly used to modify interfacial properties like wettability, lubrication, or biocompatibility. These properties are determined by the conformation of polymer molecules at the interface. Polyelectrolytes are convenient elementary bricks to build smart materials, given that polyion chain conformation is very sensitive to different environmental variables. Here we discuss the effect of an applied electric field on the properties of surfaces coated with poly(acrylic acid) brushes. By combining atomic force microscopy, quartz crystal microbalance, and contact angle experiments, we show that it is possible to precisely tune polyion chain conformation, surface adhesion, and surface wettability using very low applied voltages if the polymer grafting density and environmental conditions (pH and ionic strength) are properly formulated. Our results indicate that the effective ionization degree of the grafted weak polyacid can be finely controlled with the externally applied field, with important consequences for the macroscopic surface properties.

14.
Nat Chem ; 9(4): 347-352, 2017 04.
Article in English | MEDLINE | ID: mdl-28338691

ABSTRACT

Dispersing graphite in water to obtain true (single-layer) graphene in bulk quantity in a liquid has been an unreachable goal for materials scientists in the past decade. Similarly, a diagnostic tool to identify solubilized graphene in situ has been long awaited. Here we show that homogeneous stable dispersions of single-layer graphene (SLG) in water can be obtained by mixing graphenide (negatively charged graphene) solutions in tetrahydrofuran with degassed water and evaporating the organic solvent. In situ Raman spectroscopy of these aqueous dispersions shows all the expected characteristics of SLG. Transmission electron and atomic force microscopies on deposits confirm the single-layer character. The resulting additive-free stable water dispersions contain 400 m2 l-1 of developed graphene surface. Films prepared from these dispersions exhibit a conductivity of up to 32 kS m-1.

15.
Soft Matter ; 13(6): 1120-1131, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28093583

ABSTRACT

In this study we have investigated how different proteins interact with big organic ions. Two ions that are similar in size and chemical structure (Ph4B- anion and Ph4As+ cation) were studied. The proteins chosen are the two major allergenic proteins of cow's milk, ß-lactoglobulin and ß-casein, and bovine serum albumin, BSA, as the reference protein. First, a quantitative study to determine the hydrophobic degree of the proteins was performed. Then, electrokinetic and stability measurements on protein-coated polystyrene (PS) microspheres as a function of the tetraphenyl ion concentration were carried out. Our results show that the affinity of the organic ions depends on the hydrophobicity of the interface. Big charge inversions and re-stabilization patterns were observed at very low concentrations of tetraphenyl ions for the most hydrophobic protein studied (with ß-casein). Besides, the ionic concentrations needed to destabilize these colloidal systems were roughly one order of magnitude lower for the anion than for the cation. In addition, we studied conformational changes of the adsorbed proteins with a quartz crystal microbalance. Proteins were adsorbed onto hydrophobic flat substrates and then exposed to the tetraphenyl ions. The protein films swelled or collapsed as a function of the accumulation of tetraphenyl ions. Similarly to the electrokinetic/stability studies, the ionic concentration necessary to trigger structural changes of the protein films was one order of magnitude larger for the cation than for the anion. All the results evidence that the accumulation of these organic ions on an interface depends directly on its degree of hydrophobicity. We attribute the different interactions of the anion and the cation with these interfaces to their dissimilar hydration, which makes the anion show a more hydrophobic behaviour than the cation.


Subject(s)
Arsenicals/metabolism , Proteins/metabolism , Tetraphenylborate/metabolism , Animals , Cattle , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Binding , Protein Conformation/drug effects , Proteins/chemistry , Tetraphenylborate/pharmacology
16.
World Neurosurg ; 96: 191-194, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27613497

ABSTRACT

INTRODUCTION: Neurosurgery simulation has gained attention recently due to changes in the medical system. First-year neurosurgical residents in low-income countries usually perform their first craniotomy on a real subject. Development of high-fidelity, cheap, and largely available simulators is a challenge in residency training. An original model for the first steps of craniotomy with cerebrospinal fluid leak avoidance practice using a coconut is described. MATERIAL AND METHODS: The coconut is a drupe from Cocos nucifera L. (coconut tree). The green coconut has 4 layers, and some similarity can be seen between these layers and the human skull. The materials used in the simulation are the same as those used in the operating room. PROCEDURE: The coconut is placed on the head holder support with the face up. The burr holes are made until endocarp is reached. The mesocarp is dissected, and the conductor is passed from one hole to the other with the Gigli saw. The hook handle for the wire saw is positioned, and the mesocarp and endocarp are cut. After sawing the 4 margins, mesocarp is detached from endocarp. Four burr holes are made from endocarp to endosperm. Careful dissection of the endosperm is done, avoiding liquid albumen leak. The Gigli saw is passed through the trephine holes. Hooks are placed, and the endocarp is cut. After cutting the 4 margins, it is dissected from the endosperm and removed. The main goal of the procedure is to remove the endocarp without fluid leakage. DISCUSSION: The coconut model for learning the first steps of craniotomy and cerebrospinal fluid leak avoidance has some limitations. It is more realistic while trying to remove the endocarp without damage to the endosperm. It is also cheap and can be widely used in low-income countries. However, the coconut does not have anatomic landmarks. The mesocarp makes the model less realistic because it has fibers that make the procedure more difficult and different from a real craniotomy. CONCLUSION: The model has a potential pedagogic neurosurgical application for freshman residents before they perform a real craniotomy for the first time. Further validity is necessary to confirm this hypothesis.


Subject(s)
Cerebrospinal Fluid Leak/prevention & control , Craniotomy/methods , Learning/physiology , Models, Anatomic , Cocos , Humans
17.
Nanoscale ; 8(16): 8810-8, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27065439

ABSTRACT

Solutions of calibrated nanographenides (negatively charged nanographenes) are obtained by dissolution of graphite nanofibre intercalation compounds (GNFICs). Deposits show homogeneous unfolded nanographene platelets of 1 to 2 layers thickness and 10 nm lateral size, evidenced by atomic force microscopy and Raman spectroscopy. Upon oxidation, nanographenide solutions exhibit strong photoluminescence.

19.
Arq. bras. neurocir ; 34(3): 245-249, ago. 2015. ilus
Article in Portuguese | LILACS | ID: biblio-2423

ABSTRACT

As lesões traumáticas da medula espinhal provocadas por objetos perfurantes retidos são raras e configuram um desafio para o cirurgião da coluna vertebral. A cirurgia precoce pode minimizar o risco de sequela neurológica. Exames de diagnósticos por imagem são fundamentais para o planejamento e sucesso terapêutico, mas não devem retardar o tratamento cirúrgico. Os autores descrevem um caso de lesão medular por arma branca retida provocando a síndrome de Brown-Séquard e discutema abordagem terapêutica. Os objetivos da cirurgia são a retirada do objeto retido, sem causar déficit motor ou sensitivo adicional, e a correção da lesão dural e de eventuais instabilidades da coluna.


Traumatic spinal cord injuries caused by perforating retained objects are rare and challenging for spinal surgeons. Early surgery can minimize the risk of neurological sequelae. Diagnostic imaging exams are essential for planning and therapeutic success, but should not delay surgical treatment. The authors describe a case of spinal cord injury by stab retained causing Brown-Sequard syndrome and discuss the therapeutic approach. The goal of surgery is the removal of the object retained without causing additional motor or sensory deficit, fix the dural injury and possible spinal instabilities.


Subject(s)
Humans , Male , Adult , Spinal Cord Injuries/surgery , Spinal Cord Injuries/diagnosis , Wounds, Stab , Brown-Sequard Syndrome , Laminectomy
20.
Soft Matter ; 11(25): 5077-86, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26027700

ABSTRACT

Minute concentrations of big hydrophobic ions have the ability to induce substantial effects in soft matter systems, including novel phases in lipid layers, giant charge inversion in colloids and nanostructuration in polymer surfaces in contact with water. The effects are so strong that the term "soft matter disruptors" was coined to describe their deep impact on interfaces, which goes far beyond that found by using the classical ions considered in lyotropic (Hofmeister) sequences. In these effects, solvation thermodynamics plays a fundamental role. Interestingly, it is possible to obtain big hydrophobic cations and anions with an almost identical size and structure (e.g. Ph4B(-), Ph4As(+)), which only differ in their central atom. Here we employ different techniques (Molecular Dynamics (MD) simulations, electrophoretic mobility and Atomic Force Microscopy (AFM)) to demonstrate the dramatic differences in the interaction of Ph4B(-) and Ph4As(+) with poly(N-isopropylacrylamide) (PNIPAM), a thermoresponsive polymer with expanded (well hydrated) and collapsed (poorly hydrated) states. Although both ions interact strongly with neutral PNIPAM chains and cationic or anionic PNIPAM microgels in the collapsed states, the effects of Ph4B(-) on PNIPAM are always substantially stronger than the effects of Ph4As(+). MD simulations predict that ion-PNIPAM free energy of interaction is four times larger for Ph4B(-) than for Ph4As(+). Electrokinetic and AFM experiments show that, acting as counter-ions, both ions are able to invert the charge of anionic or cationic PNIPAM microgels at minute concentrations, but the charge inversion due to Ph4B(-) is much larger than that obtained with Ph4As(+). Therefore, even for big ions of identical size, shape and valence, the affinity of anions and cations for interfaces is intrinsically different.


Subject(s)
Acrylic Resins/chemistry , Anions/chemistry , Gels/chemistry , Cations/chemistry , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Molecular Dynamics Simulation , Sodium Chloride/chemistry , Surface Properties , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...