Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 11: 1218, 2020.
Article in English | MEDLINE | ID: mdl-32760354

ABSTRACT

The Sulfolobus Spindle-shaped Virus (SSV) system has become a model for studying thermophilic virus biology, including archaeal host-virus interactions and biogeography. Several factors make the SSV system amenable to studying archaeal genetic mechanisms (e.g., CRISPRs) as well as virus-host interactions in high temperature acidic environments. Previously, we reported that SSVs exhibited differential infectivity on allopatric vs. sympatric hosts. We also noticed a wide host range for virus strain SSV9 (a.k.a., SSVK1). For decades, SSVs have been described as "non-lytic" double-stranded DNA viruses that infect species of the genus Sulfolobus and release virions via budding rather than host lysis. In this study, we show that SSVs infect hosts representing more than one genus of the family Sulfolobaceae in spot-on-lawn "halo" assays and in liquid culture infection assays. Growth curve analyses support the hypothesis that SSV9 virion release causes cell lysis. While SSV9 appears to lyse allopatric hosts, on a single sympatric host, SSV9 exhibits canonical non-lytic viral release historically reported SSVs. Therefore, the nature of SSV9 lytic-like behavior may be driven by allopatric evolution. The SSV9-infected host growth profile does not appear to be driven by multiplicity of infection (MOI). Greater stability of SSV9 vs. other SSVs (i.e., SSV1) in high temperature, low pH environments may contribute to higher transmission rates. However, neither higher transmission rate nor relative virulence in SSV9 infection seems to alter replication profile in susceptible hosts. Although it is known that CRISPR-Cas systems offer protection against viral infection in prokaryotes, CRISPRS are not reported to be a determinant of virus replication strategy. The mechanisms underlying SSV9 lytic-like behavior remain unknown and are the subject of ongoing investigations. These results suggest that genetic elements, potentially resulting from allopatric evolution, mediate distinct virus-host growth profiles of specific SSV-host strain pairings.

2.
PLoS One ; 15(6): e0231061, 2020.
Article in English | MEDLINE | ID: mdl-32525960

ABSTRACT

Monitoring the presence and spread of pathogens in the environment is of critical importance. Rapid detection of infectious disease outbreaks and prediction of their spread can facilitate early responses of health agencies and reduce the severity of outbreaks. Current sampling methods are sorely limited by available personnel and throughput. For instance, xenosurveillance utilizes captured arthropod vectors, such as mosquitoes, as sampling tools to access blood from a wide variety of vertebrate hosts. Next generation sequencing (NGS) of nucleic acid from individual blooded mosquitoes can be used to identify mosquito and host species, and microorganisms including pathogens circulating within either host. However, there are practical challenges to collecting and processing mosquitoes for xenosurveillance, such as the rapid metabolization or decay of microorganisms within the mosquito midgut. This particularly affects pathogens that do not replicate in mosquitoes, preventing their detection by NGS or other methods. Accordingly, we performed a series of experiments to establish the windows of detection for DNA or RNA from human blood and/or viruses present in mosquito blood meals. Our results will contribute to the development of xenosurveillance techniques with respect to optimal timing of sample collection and NGS processing and will also aid trap design by demonstrating the stabilizing effect of temperature control on viral genome recovery from blood-fed mosquitoes.


Subject(s)
Blood , Culicidae/virology , DNA, Viral/analysis , RNA, Viral/analysis , Animals , DNA, Viral/genetics , Environmental Monitoring , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction
3.
mSphere ; 2(3)2017.
Article in English | MEDLINE | ID: mdl-28656176

ABSTRACT

The blood-brain barrier (BBB) comprises the foremost protective barrier in the brain and is composed in part of a layer of microvascular endothelial cells that line the capillaries surrounding the brain. Here, we describe a human three-dimensional (3-D) cell-based model of the BBB microvascular endothelium that recapitulates properties of these cells in vivo, including physiologically relevant transcriptional profiles, the capacity to induce potent antimicrobial innate immune signaling, and the ability to resist infection by diverse RNA viruses, including members of the enterovirus (coxsackievirus B, echovirus 11, enterovirus 71, poliovirus) and flavivirus (dengue virus, Zika virus [ZIKV]) families. We show that disruption of apical tight junctions by proinflammatory cytokine tumor necrosis factor alpha (TNF-α) sensitizes 3-D-cultured BBB cells to ZIKV infection and that 3-D derived BBB cells can be used to model the transmigration of ZIKV-infected monocytes across the endothelial barrier to access underlying astrocytes. Taken together, our findings show that human BBB microvascular endothelial cells cultured in 3-D can be used to model the mechanisms by which RNA viruses access the central nervous system (CNS), which could be used for the development and screening of therapeutics to limit this event. IMPORTANCE Neurotropic viral infections are significant sources of global morbidity and mortality. The blood-brain barrier (BBB) is composed in part of a layer of microvascular endothelial cells and functions to restrict viral access to the brain. In vitro models that recapitulate many of the properties of the human BBB endothelium are lacking, particularly with respect to the unique cellular and immunological mechanisms by which these cells restrict viral infections of the brain. Here, we developed a three-dimensional cell culture model that recapitulates many of the morphological and functional properties of the BBB microvasculature and apply this model to the study of RNA virus infections. The model we describe can therefore be used to study a variety of aspects of BBB physiology, including the mechanisms by which viruses might access the CNS, and could be used for the development and screening of antiviral therapeutics to limit this important step in viral pathogenesis.

4.
Proc Natl Acad Sci U S A ; 114(7): 1672-1677, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28137842

ABSTRACT

Enteroviruses are among the most common viral infectious agents of humans and are primarily transmitted by the fecal-oral route. However, the events associated with enterovirus infections of the human gastrointestinal tract remain largely unknown. Here, we used stem cell-derived enteroids from human small intestines to study enterovirus infections of the intestinal epithelium. We found that enteroids were susceptible to infection by diverse enteroviruses, including echovirus 11 (E11), coxsackievirus B (CVB), and enterovirus 71 (EV71), and that contrary to an immortalized intestinal cell line, enteroids induced antiviral and inflammatory signaling pathways in response to infection in a virus-specific manner. Furthermore, using the Notch inhibitor dibenzazepine (DBZ) to drive cellular differentiation into secretory cell lineages, we show that although goblet cells resist E11 infection, enteroendocrine cells are permissive, suggesting that enteroviruses infect specific cell populations in the human intestine. Taken together, our studies provide insights into enterovirus infections of the human intestine, which could lead to the identification of novel therapeutic targets and/or strategies to prevent or treat infections by these highly clinically relevant viruses.


Subject(s)
Enterovirus Infections/virology , Enterovirus/physiology , Intestine, Small/virology , Organoids/virology , Caco-2 Cells , Cell Lineage/drug effects , Cell Lineage/genetics , Cells, Cultured , Dibenzazepines/pharmacology , Disease Resistance/genetics , Enterovirus Infections/metabolism , Enzyme Inhibitors/pharmacology , Gene Expression Profiling/methods , Host-Pathogen Interactions , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/virology , Intestine, Small/cytology , Intestine, Small/metabolism , Organoids/cytology , Organoids/metabolism , Signal Transduction/genetics
5.
mSphere ; 1(1)2016.
Article in English | MEDLINE | ID: mdl-27303677

ABSTRACT

Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the epithelium lining the gastrointestinal tract early in infection. The lack of suitable in vivo and in vitro models to study CVB infection of the gastrointestinal epithelium has limited our understanding of the events that surround infection of these specialized cells. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of human intestinal epithelial cells that better models the gastrointestinal epithelium in vivo. By applying this 3-D model, which recapitulates many aspects of the gastrointestinal epithelium in vivo, to the study of CVB infection, our work provides a new cell system to model the mechanisms by which CVB infects the intestinal epithelium, which may have a profound impact on CVB pathogenesis. Podcast: A podcast concerning this article is available.

6.
Cell Host Microbe ; 18(2): 221-32, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26269957

ABSTRACT

Receptor interacting protein kinase-3 (RIP3) is an essential kinase for necroptotic cell death signaling and has been implicated in antiviral cell death signaling upon DNA virus infection. Here, we performed high-throughput RNAi screening and identified RIP3 as a positive regulator of coxsackievirus B3 (CVB) replication in intestinal epithelial cells (IECs). RIP3 regulates autophagy, a process utilized by CVB for viral replication factory assembly, and depletion of RIP3 inhibits autophagic flux and leads to the accumulation of autophagosomes and amphisomes. Additionally, later in infection, RIP3 is cleaved by the CVB-encoded cysteine protease 3C(pro), which serves to abrogate RIP3-mediated necrotic signaling and induce a nonnecrotic form of cell death. Taken together, our results show that temporal targeting of RIP3 allows CVB to benefit from its roles in regulating autophagy while inhibiting the induction of necroptotic cell death.


Subject(s)
Autophagy , Cysteine Endopeptidases/metabolism , Enterovirus B, Human/physiology , Epithelial Cells/virology , Host-Pathogen Interactions , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Viral Proteins/metabolism , Virus Replication , 3C Viral Proteases , Caco-2 Cells , Enterovirus B, Human/metabolism , Gene Silencing , Genetic Testing , Humans , RNA Interference
7.
Antiviral Res ; 92(2): 313-8, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21906628

ABSTRACT

Select mutations in the human cytomegalovirus (HCMV) gene UL27 confer low-grade resistance to the HCMV UL97 kinase inhibitor maribavir (MBV). It has been reported that the 608-amino acid UL27 gene product (pUL27) normally localizes to cell nuclei and nucleoli, whereas its truncation at codon 415, as found in a MBV-resistant mutant, results in cytoplasmic localization. We now show that in the context of full-length pUL27, diverse single amino acid substitutions associated with MBV resistance result in loss of its nucleolar localization when visualized after transient transfection, whereas substitutions representing normal interstrain polymorphism had no such effect. The same differences in localization were observed during a complete infection cycle with recombinant HCMV strains over-expressing full-length fluorescent pUL27 variants. Nested UL27 C-terminal truncation expression plasmids showed that amino acids 596-599 were required for the nucleolar localization of pUL27. These results indicate that the loss of a nucleolar function of pUL27 may contribute to MBV resistance, and that the nucleolar localization of pUL27 during HCMV infection depends not only on a carboxy-terminal domain but also on a property of pUL27 that is affected by MBV-resistant mutations, such as an interaction with component(s) of the nucleolus.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , Cytomegalovirus Infections/virology , Cytomegalovirus/drug effects , Drug Resistance, Viral , Ribonucleosides/pharmacology , Viral Proteins/metabolism , Virus Replication/drug effects , Cell Nucleus/chemistry , Cytomegalovirus/isolation & purification , Cytomegalovirus/pathogenicity , Cytoplasm/chemistry , Humans , Mutation, Missense , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...