Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1277617, 2023.
Article in English | MEDLINE | ID: mdl-37900765

ABSTRACT

The action of the petunia strigolactone (SL) hormone receptor DAD2 is dependent not only on its interaction with the PhMAX2A and PhD53A proteins, but also on its expression patterns within the plant. Previously, in a yeast-2-hybrid system, we showed that a series of a single and double amino acid mutants of DAD2 had altered interactions with these binding partners. In this study, we tested the mutants in two plant systems, Arabidopsis and petunia. Testing in Arabidopsis was enabled by creating a CRISPR-Cas9 knockout mutant of the Arabidopsis strigolactone receptor (AtD14). We produced SL receptor activity in both systems using wild type and mutant genes; however, the mutants had functions largely indistinguishable from those of the wild type. The expression of the wild type DAD2 from the CaMV 35S promoter in dad2 petunia produced plants neither quite like the dad2 mutant nor the V26 wild type. These plants had greater height and leaf size although branch number and the plant shape remained more like those of the mutant. These traits may be valuable in the context of a restricted area growing system such as controlled environment agriculture.

2.
J Biol Chem ; 295(13): 4181-4193, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32071083

ABSTRACT

Strigolactones (SLs) are terpenoid-derived plant hormones that regulate various developmental processes, particularly shoot branching, root development, and leaf senescence. The SL receptor has an unusual mode of action. Upon binding SL, it hydrolyzes the hormone, and then covalently binds one of the hydrolytic products. These initial events enable the SL receptor DAD2 (in petunia) to interact with the F-box protein PhMAX2A of the Skp-Cullin-F-box (SCF) complex and/or a repressor of SL signaling, PhD53A. However, it remains unclear how binding and hydrolysis structurally alters the SL receptor to enable its engagement with signaling partners. Here, we used mutagenesis to alter DAD2 and affect SL hydrolysis or DAD2's ability to interact with its signaling partners. We identified three DAD2 variants whose hydrolytic activity had been separated from the receptor's interactions with PhMAX2A or PhD53A. Two variants, DAD2N242I and DAD2F135A, having substitutions in the core α/ß hydrolase-fold domain and the hairpin, exhibited hormone-independent interactions with PhMAX2A and PhD53A, respectively. Conversely, the DAD2D166A variant could not interact with PhMAX2A in the presence of SL, but its interaction with PhD53A remained unaffected. Structural analyses of DAD2N242I and DAD2D166A revealed only small differences compared with the structure of the WT receptor. Results of molecular dynamics simulations of the DAD2N242I structure suggested that increased flexibility is a likely cause for its SL-independent interaction with PhMAX2A. Our results suggest that PhMAX2A and PhD53A have distinct binding sites on the SL receptor and that its flexibility is a major determinant of its interactions with these two downstream regulators.


Subject(s)
Heterocyclic Compounds, 3-Ring/chemistry , Lactones/chemistry , Petunia/chemistry , Plant Growth Regulators/genetics , Plant Proteins/chemistry , F-Box Proteins/chemistry , F-Box Proteins/genetics , Gene Expression Regulation, Plant/genetics , Hydrolases/chemistry , Hydrolases/genetics , Petunia/genetics , Plant Growth Regulators/chemistry , Plant Proteins/genetics , Protein Binding/genetics , SKP Cullin F-Box Protein Ligases/chemistry , SKP Cullin F-Box Protein Ligases/genetics , Signal Transduction/genetics
3.
Plant Biotechnol J ; 17(5): 869-880, 2019 05.
Article in English | MEDLINE | ID: mdl-30302894

ABSTRACT

Annualization of woody perennials has the potential to revolutionize the breeding and production of fruit crops and rapidly improve horticultural species. Kiwifruit (Actinidia chinensis) is a recently domesticated fruit crop with a short history of breeding and tremendous potential for improvement. Previously, multiple kiwifruit CENTRORADIALIS (CEN)-like genes have been identified as potential repressors of flowering. In this study, CRISPR/Cas9- mediated manipulation enabled functional analysis of kiwifruit CEN-like genes AcCEN4 and AcCEN. Mutation of these genes transformed a climbing woody perennial, which develops axillary inflorescences after many years of juvenility, into a compact plant with rapid terminal flower and fruit development. The number of affected genes and alleles and severity of detected mutations correlated with the precocity and change in plant stature, suggesting that a bi-allelic mutation of either AcCEN4 or AcCEN may be sufficient for early flowering, whereas mutations affecting both genes further contributed to precocity and enhanced the compact growth habit. CRISPR/Cas9-mediated mutagenesis of AcCEN4 and AcCEN may be a valuable means to engineer Actinidia amenable for accelerated breeding, indoor farming and cultivation as an annual crop.


Subject(s)
Actinidia/genetics , Flowers/genetics , Actinidia/anatomy & histology , Actinidia/growth & development , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Ectopic Gene Expression/genetics , Flowers/anatomy & histology , Flowers/growth & development , Gene Editing , Genes, Plant/genetics , Genes, Plant/physiology , Plant Proteins/genetics , Plant Proteins/physiology
4.
J Biol Chem ; 293(17): 6530-6543, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29523686

ABSTRACT

The strigolactone (SL) family of plant hormones regulates a broad range of physiological processes affecting plant growth and development and also plays essential roles in controlling interactions with parasitic weeds and symbiotic fungi. Recent progress elucidating details of SL biosynthesis, signaling, and transport offers many opportunities for discovering new plant-growth regulators via chemical interference. Here, using high-throughput screening and downstream biochemical assays, we identified N-phenylanthranilic acid derivatives as potent inhibitors of the SL receptors from petunia (DAD2), rice (OsD14), and Arabidopsis (AtD14). Crystal structures of DAD2 and OsD14 in complex with inhibitors further provided detailed insights into the inhibition mechanism, and in silico modeling of 19 other plant strigolactone receptors suggested that these compounds are active across a large range of plant species. Altogether, these results provide chemical tools for investigating SL signaling and further define a framework for structure-based approaches to design and validate optimized inhibitors of SL receptors for specific plant targets.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Models, Molecular , Oryza , Petunia , Receptors, Cell Surface , ortho-Aminobenzoates , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Computer Simulation , Oryza/chemistry , Oryza/genetics , Oryza/metabolism , Petunia/chemistry , Petunia/genetics , Petunia/metabolism , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Structure-Activity Relationship , ortho-Aminobenzoates/chemistry , ortho-Aminobenzoates/pharmacology
5.
J Exp Bot ; 69(9): 2379-2390, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29190381

ABSTRACT

Branching has a major influence on the overall shape and productivity of a plant. Strigolactones (SLs) have been identified as plant hormones that have a key role in suppressing the outgrowth of axillary meristems. CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes are integral to the biosynthesis of SLs and are well characterized in annual plants, but their role in woody perennials is relatively unknown. We identified CCD7 and CCD8 orthologues from apple and demonstrated that MdCCD7 and MdCCD8 are able to complement the Arabidopsis branching mutants max3 and max4 respectively, indicating conserved function. RNAi lines of MdCCD7 show reduced gene expression and increased branching in apple. We performed reciprocal grafting experiments with combinations of MdCCD7 RNAi and wild-type 'Royal Gala' as rootstocks and scion. Unexpectedly, wild-type roots were unable to suppress branching in MdCCD7 RNAi scions. Another key finding was that MdCCD7 RNAi scions initiated phytomers at an increased rate relative to the wild type, resulting in a greater node number and primary shoot length. We suggest that localized SL biosynthesis in the shoot, rather than roots, controls axillary bud outgrowth and shoot growth rate in apple.


Subject(s)
Dioxygenases/genetics , Lactones/metabolism , Malus/genetics , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Shoots/growth & development , Dioxygenases/metabolism , Gene Expression Regulation, Plant , Malus/growth & development , Malus/metabolism , Plant Proteins/metabolism , Plant Shoots/genetics
6.
Plant Physiol ; 168(2): 735-51, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25911529

ABSTRACT

Plants alter their development in response to changes in their environment. This responsiveness has proven to be a successful evolutionary trait. Here, we tested the hypothesis that two key environmental factors, light and nutrition, are integrated within the axillary bud to promote or suppress the growth of the bud into a branch. Using petunia (Petunia hybrida) as a model for vegetative branching, we manipulated both light quality (as crowding and the red-to-far-red light ratio) and phosphate availability, such that the axillary bud at node 7 varied from deeply dormant to rapidly growing. In conjunction with the phenotypic characterization, we also monitored the state of the strigolactone (SL) pathway by quantifying SL-related gene transcripts. Mutants in the SL pathway inhibit but do not abolish the branching response to these environmental signals, and neither signal is dominant over the other, suggesting that the regulation of branching in response to the environment is complex. We have isolated three new putatively SL-related TCP (for Teosinte branched1, Cycloidia, and Proliferating cell factor) genes from petunia, and have identified that these TCP-type transcription factors may have roles in the SL signaling pathway both before and after the reception of the SL signal at the bud. We show that the abundance of the receptor transcript is regulated by light quality, such that axillary buds growing in added far-red light have greatly increased receptor transcript abundance. This suggests a mechanism whereby the impact of any SL signal reaching an axillary bud is modulated by the responsiveness of these cells to the signal.


Subject(s)
Environment , Morphogenesis , Petunia/growth & development , Biosynthetic Pathways/drug effects , Biosynthetic Pathways/genetics , Biosynthetic Pathways/radiation effects , DNA, Complementary/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Genes, Plant , Light , Molecular Sequence Data , Morphogenesis/drug effects , Morphogenesis/radiation effects , Petunia/drug effects , Petunia/genetics , Petunia/radiation effects , Phosphorus/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/radiation effects , Plant Stems/drug effects , Plant Stems/genetics , Plant Stems/radiation effects , Principal Component Analysis , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Signal Transduction/radiation effects , Transcription Factors/metabolism
7.
Curr Opin Plant Biol ; 17: 28-35, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24507491

ABSTRACT

Axillary meristems are formed in leaf axils and their growth into branches is a highly controlled process that is an important contributor to plant architecture. Here we discuss work that improves our understanding of the initiation and growth of axillary meristems. Recent results have implicated brassinosteroid signalling in the formation of axillary meristems. Our knowledge of axillary meristem outgrowth has also advanced, particularly in the areas of strigolactone signal production and perception, which have been shown to respond to environmental inputs. Auxins and cytokinins have also been linked to the control of axillary shoot development, revealing a complex network of signals that combine to regulate the outgrowth of an axillary meristem into a branch.


Subject(s)
Meristem/growth & development , Plant Leaves/growth & development , Plant Proteins/metabolism , Plant Shoots/growth & development , Brassinosteroids/metabolism , Cytokinins/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Lactones/metabolism , Meristem/genetics , Meristem/metabolism , Models, Biological , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Shoots/genetics , Plant Shoots/metabolism
8.
Curr Biol ; 22(21): 2032-6, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-22959345

ABSTRACT

Strigolactones are a recently discovered class of plant hormone involved in branching, leaf senescence, root development, and plant-microbe interactions. They are carotenoid-derived lactones, synthesized in the roots and transported acropetally to modulate axillary bud outgrowth (i.e., branching). However, a receptor for strigolactones has not been identified. We have identified the DAD2 gene from petunia, an ortholog of the rice and Arabidopsis D14 genes, and present evidence for its roles in strigolactone perception and signaling. DAD2 acts in the strigolactone pathway, and the dad2 mutant is insensitive to the strigolactone analog GR24. The crystal structure of DAD2 reveals an α/ß hydrolase fold containing a canonical catalytic triad with a large internal cavity capable of accommodating strigolactones. In the presence of GR24 DAD2 interacts with PhMAX2A, a central component of strigolactone signaling, in a GR24 concentration-dependent manner. DAD2 can hydrolyze GR24, with mutants of the catalytic triad abolishing both this activity and the ability of DAD2 to interact with PhMAX2A. The hydrolysis products can neither stimulate the protein-protein interaction nor modulate branching. These observations suggest that DAD2 acts to bind the mobile strigolactone signal and then interacts with PhMAX2A during catalysis to initiate an SCF-mediated signal transduction pathway.


Subject(s)
Hydrolases/metabolism , Petunia/growth & development , Petunia/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Biological Transport , Carrier Proteins/metabolism , Crystallography, X-Ray , Gene Expression Regulation, Plant , Hydrolases/chemistry , Hydrolases/genetics , Lactones/metabolism , Lactones/pharmacology , Molecular Sequence Data , Petunia/genetics , Plant Growth Regulators/genetics , Plant Leaves/growth & development , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/embryology , Plant Roots/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Signal Transduction
9.
Front Plant Sci ; 2: 115, 2011.
Article in English | MEDLINE | ID: mdl-22645562

ABSTRACT

Analysis of mutants with increased branching has revealed the strigolactone synthesis/perception pathway which regulates branching in plants. However, whether variation in this well conserved developmental signaling system contributes to the unique plant architectures of different species is yet to be determined. We examined petunia orthologs of the ArabidopsisMAX1 and MAX2 genes to characterize their role in petunia architecture. A single ortholog of MAX1, PhMAX1 which encodes a cytochrome P450, was identified and was able to complement the max1 mutant of Arabidopsis. Petunia has two copies of the MAX2 gene, PhMAX2A and PhMAX2B which encode F-Box proteins. Differences in the transcript levels of these two MAX2-like genes suggest diverging functions. Unlike PhMAX2B, PhMAX2A mRNA levels change in leaves of differing age/position on the plant. Nonetheless, this gene functionally complements the Arabidopsismax2 mutant indicating that the biochemical activity of the PhMAX2A protein is not significantly different from MAX2. The expression of the petunia strigolactone pathway genes (PhCCD7, PhCCD8, PhMAX1, PhMAX2A, and PhMAX2B) was then further investigated throughout the development of wild-type petunia plants. Three of these genes showed changes in mRNA levels over a development series. Alterations to the expression patterns of these genes may influence the branching growth habit of plants by changing strigolactone production and/or sensitivity. These changes could allow both subtle and dramatic changes to branching within and between species.

10.
Plant Signal Behav ; 5(4): 422-4, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20118665

ABSTRACT

Plants regulate the development of branches in response to environmental and developmental signals in order to maximize reproductive success. A number of hormone signals are involved in the regulation of branching and both their production and transmission affect axillary meristem outgrowth. With the identification of strigolactones as root-derived branch inhibitors it seems likely that a biochemical pathway starting from a carotenoid and resulting in production of a strigolactone hormone is present in most plants. Our observation that loss of CCD7 or CCD8 also results in production of a promoter of branching from roots shows the branching pathway has multiple levels of control which allows a high degree of sensitivity to subtle differences in environmental and developmental signals.

11.
Plant Physiol ; 151(4): 1867-77, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19846541

ABSTRACT

One of the key factors that defines plant form is the regulation of when and where branches develop. The diversity of form observed in nature results, in part, from variation in the regulation of branching between species. Two CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes, CCD7 and CCD8, are required for the production of a branch-suppressing plant hormone. Here, we report that the decreased apical dominance3 (dad3) mutant of petunia (Petunia hybrida) results from the mutation of the PhCCD7 gene and has a less severe branching phenotype than mutation of PhCCD8 (dad1). An analysis of the expression of this gene in wild-type, mutant, and grafted petunia suggests that in petunia, CCD7 and CCD8 are coordinately regulated. In contrast to observations in Arabidopsis (Arabidopsis thaliana), ccd7ccd8 double mutants in petunia show an additive phenotype. An analysis using dad3 or dad1 mutant scions grafted to wild-type rootstocks showed that when these plants produce adventitious mutant roots, branching is increased above that seen in plants where the mutant roots are removed. The results presented here indicate that mutation of either CCD7 or CCD8 in petunia results in both the loss of an inhibitor of branching and an increase in a promoter of branching.


Subject(s)
Morphogenesis , Petunia/enzymology , Petunia/growth & development , Plant Proteins/metabolism , Signal Transduction , Biomass , Chromosome Segregation/genetics , Feedback, Physiological , Gene Expression Regulation, Plant , Genes, Plant , Genetic Complementation Test , Molecular Sequence Data , Mutation/genetics , Organ Size , Organ Specificity , Petunia/genetics , Phenotype , Plant Proteins/genetics , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/growth & development , Plant Shoots/enzymology , Plant Shoots/growth & development , Plant Stems/enzymology , Plant Stems/genetics , RNA Interference , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...