Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 47(15): 8923-30, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23865377

ABSTRACT

Triclosan (TCS) is a broad-spectrum antimicrobial compound that is incorporated into numerous consumer products. TCS has been detected in aquatic ecosystems across the U.S., raising concern about its potential ecological effects. We conducted a field survey and an artificial stream experiment to assess effects of TCS on benthic bacterial communities. Field sampling indicated that TCS concentrations in stream sediments increased with degree of urbanization. There was significant correlation between sediment TCS concentration and the proportion of cultivable benthic bacteria that were resistant to TCS, demonstrating that the levels of TCS present in these streams was affecting the native communities. An artificial stream experiment confirmed that TCS exposure could trigger increases in TCS resistance within cultivable benthic bacteria, and pyrosequencing analysis indicated that TCS resulted in decreased benthic bacterial diversity and shifts in bacterial community composition. One notable change was a 6-fold increase in the relative abundance of cyanobacterial sequences and a dramatic die-off of algae within the artificial streams. Selection of cyanobacteria over algae could have significant implications for higher trophic levels within streams. Finally, there were no observed effects of TCS on bacterial abundance or respiration rates, suggesting that bacterial density and function were highly resilient to TCS exposure.


Subject(s)
Anti-Infective Agents, Local/pharmacology , Bacteria/drug effects , Triclosan/pharmacology , Bacteria/classification , Colony Count, Microbial , Drug Resistance, Bacterial , Phylogeny
2.
Appl Environ Microbiol ; 79(6): 1897-905, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23315724

ABSTRACT

In highly urbanized areas, wastewater treatment plant (WWTP) effluent can represent a significant component of freshwater ecosystems. As it is impossible for the composition of WWTP effluent to match the composition of the receiving system, the potential exists for effluent to significantly impact the chemical and biological characteristics of the receiving ecosystem. We assessed the impacts of WWTP effluent on the size, activity, and composition of benthic microbial communities by comparing two distinct field sites in the Chicago metropolitan region: a highly urbanized river receiving effluent from a large WWTP and a suburban river receiving effluent from a much smaller WWTP. At sites upstream of effluent input, the urban and suburban rivers differed significantly in chemical characteristics and in the composition of their sediment bacterial communities. Although effluent resulted in significant increases in inorganic nutrients in both rivers, surprisingly, it also resulted in significant decreases in the population size and diversity of sediment bacterial communities. Tag pyrosequencing of bacterial 16S rRNA genes revealed significant effects of effluent on sediment bacterial community composition in both rivers, including decreases in abundances of Deltaproteobacteria, Desulfococcus, Dechloromonas, and Chloroflexi sequences and increases in abundances of Nitrospirae and Sphingobacteriales sequences. The overall effect of the WWTP inputs was that the two rivers, which were distinct in chemical and biological properties upstream of the WWTPs, were almost indistinguishable downstream. These results suggest that WWTP effluent has the potential to reduce the natural variability that exists among river ecosystems and indicate that WWTP effluent may contribute to biotic homogenization.


Subject(s)
Bacteria/classification , Biodiversity , Biota , Geologic Sediments/microbiology , Rivers/chemistry , Wastewater , Water Purification , Chicago , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...