Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 7(1): 195, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796108

ABSTRACT

We recently identified Secernin-1 (SCRN1) as a novel amyloid plaque associated protein using localized proteomics. Immunohistochemistry studies confirmed that SCRN1 was present in plaque-associated dystrophic neurites and also revealed distinct and abundant co-localization with neurofibrillary tangles (NFTs). Little is known about the physiological function of SCRN1 and its role in Alzheimer's disease (AD) and other neurodegenerative diseases has not been studied. Therefore, we performed a comprehensive study of SCRN1 distribution in neurodegenerative diseases. Immunohistochemistry was used to map SCRN1 accumulation throughout the progression of AD in a cohort of 58 patients with a range of NFT pathology (Abundant NFT, n = 21; Moderate NFT, n = 22; Low/No NFT, n = 15), who were clinically diagnosed as having AD, mild cognitive impairment or normal cognition. SCRN1 accumulation was also examined in two cases with both Frontotemporal Lobar Degeneration (FTLD)-Tau and AD-related neuropathology, cases of Down Syndrome (DS) with AD (n = 5), one case of hereditary cerebral hemorrhage with amyloidosis - Dutch type (HCHWA-D) and other non-AD tauopathies including: primary age-related tauopathy (PART, [n = 5]), Corticobasal Degeneration (CBD, [n = 5]), Progressive Supranuclear Palsy (PSP, [n = 5]) and Pick's disease (PiD, [n = 4]). Immunohistochemistry showed that SCRN1 was a neuronal protein that abundantly accumulated in NFTs and plaque-associated dystrophic neurites throughout the progression of AD. Quantification of SCRN1 immunohistochemistry confirmed that SCRN1 preferentially accumulated in NFTs in comparison to surrounding non-tangle containing neurons at both early and late stages of AD. Similar results were observed in DS with AD and PART. However, SCRN1 did not co-localize with phosphorylated tau inclusions in CBD, PSP or PiD. Co-immunoprecipitation revealed that SCRN1 interacted with phosphorylated tau in human AD brain tissue. Together, these results suggest that SCRN1 is uniquely associated with tau pathology in AD, DS and PART. As such, SCRN1 has potential as a novel therapeutic target and could serve as a useful biomarker to distinguish AD from other tauopathies.


Subject(s)
Alzheimer Disease/metabolism , Cerebral Cortex/metabolism , Nerve Tissue Proteins/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Cerebral Cortex/chemistry , Cerebral Cortex/pathology , Female , Humans , Male , Middle Aged , Nerve Tissue Proteins/analysis , Phosphorylation/physiology , Protein Binding/physiology , Tauopathies/pathology , tau Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...