Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Nucleic Acids Res ; 49(19): 11257-11273, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34657954

ABSTRACT

Bacteria have evolved a multitude of systems to prevent invasion by bacteriophages and other mobile genetic elements. Comparative genomics suggests that genes encoding bacterial defence mechanisms are often clustered in 'defence islands', providing a concerted level of protection against a wider range of attackers. However, there is a comparative paucity of information on functional interplay between multiple defence systems. Here, we have functionally characterised a defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a suite of thirty environmentally-isolated coliphages, we demonstrate multi-layered and robust phage protection provided by a plasmid-encoded defence island that expresses both a type I BREX system and the novel GmrSD-family type IV DNA modification-dependent restriction enzyme, BrxU. We present the structure of BrxU to 2.12 Å, the first structure of the GmrSD family of enzymes, and show that BrxU can utilise all common nucleotides and a wide selection of metals to cleave a range of modified DNAs. Additionally, BrxU undergoes a multi-step reaction cycle instigated by an unexpected ATP-dependent shift from an intertwined dimer to monomers. This direct evidence that bacterial defence islands can mediate complementary layers of phage protection enhances our understanding of the ever-expanding nature of phage-bacterial interactions.


Subject(s)
Bacterial Proteins/chemistry , Coliphages/genetics , DNA Restriction-Modification Enzymes/chemistry , Escherichia coli/genetics , Escherichia/genetics , Plasmids/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Coliphages/metabolism , Crystallography, X-Ray , DNA Restriction-Modification Enzymes/genetics , DNA Restriction-Modification Enzymes/metabolism , DNA, Viral/chemistry , DNA, Viral/genetics , DNA, Viral/metabolism , Escherichia/metabolism , Escherichia/virology , Escherichia coli/metabolism , Escherichia coli/virology , Gene Expression , Genomic Islands , Genomics/methods , Models, Molecular , Plasmids/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
2.
Nucleic Acids Res ; 46(17): 9067-9080, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30165537

ABSTRACT

Restriction Modification (RM) systems prevent the invasion of foreign genetic material into bacterial cells by restriction and protect the host's genetic material by methylation. They are therefore important in maintaining the integrity of the host genome. RM systems are currently classified into four types (I to IV) on the basis of differences in composition, target recognition, cofactors and the manner in which they cleave DNA. Comparing the structures of the different types, similarities can be observed suggesting an evolutionary link between these different types. This work describes the 'deconstruction' of a large Type I RM enzyme into forms structurally similar to smaller Type II RM enzymes in an effort to elucidate the pathway taken by Nature to form these different RM enzymes. Based upon the ability to engineer new enzymes from the Type I 'scaffold', an evolutionary pathway and the evolutionary pressures required to move along the pathway from Type I RM systems to Type II RM systems are proposed. Experiments to test the evolutionary model are discussed.


Subject(s)
DNA, Bacterial/metabolism , Deoxyribonucleases, Type I Site-Specific/metabolism , Deoxyribonucleases, Type II Site-Specific/metabolism , Escherichia coli Proteins/metabolism , Evolution, Molecular , Models, Genetic , Amino Acid Sequence , Binding Sites , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Deoxyribonucleases, Type I Site-Specific/chemistry , Deoxyribonucleases, Type I Site-Specific/genetics , Deoxyribonucleases, Type II Site-Specific/chemistry , Deoxyribonucleases, Type II Site-Specific/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Kinetics , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Engineering , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Structural Homology, Protein , Structure-Activity Relationship
4.
Nucleic Acids Res ; 45(6): 3395-3406, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28180279

ABSTRACT

Staphylococcus aureus displays a clonal population structure in which horizontal gene transfer between different lineages is extremely rare. This is due, in part, to the presence of a Type I DNA restriction-modification (RM) system given the generic name of Sau1, which maintains different patterns of methylation on specific target sequences on the genomes of different lineages. We have determined the target sequences recognized by the Sau1 Type I RM systems present in a wide range of the most prevalent S. aureus lineages and assigned the sequences recognized to particular target recognition domains within the RM enzymes. We used a range of biochemical assays on purified enzymes and single molecule real-time sequencing on genomic DNA to determine these target sequences and their patterns of methylation. Knowledge of the main target sequences for Sau1 will facilitate the synthesis of new vectors for transformation of the most prevalent lineages of this 'untransformable' bacterium.


Subject(s)
DNA Modification Methylases/chemistry , DNA Modification Methylases/metabolism , Deoxyribonucleases, Type I Site-Specific/chemistry , Deoxyribonucleases, Type I Site-Specific/metabolism , Staphylococcus aureus/enzymology , Amino Acid Sequence , DNA/chemistry , DNA/metabolism , Protein Domains , Sequence Analysis, DNA , Staphylococcus aureus/genetics , Transformation, Bacterial
6.
Adv Exp Med Biol ; 915: 81-97, 2016.
Article in English | MEDLINE | ID: mdl-27193539

ABSTRACT

The Type I DNA restriction-modification (RM) systems of Staphylococcus aureus are known to act as a significant barrier to horizontal gene transfer between S. aureus strains belonging to different clonal complexes. The livestock-associated clonal complexes CC133/771 and CC398 contain Type I RM systems not found in human MRSA strains as yet but at some point transfer will occur. When this does take place, horizontal gene transfer of resistance will happen more easily between these strains. The reservoir of antibiotic resistance, virulence and host-adaptation genes present in livestock-associated MRSA will then potentially contribute to the development of newly evolving MRSA clones. The target sites recognised by the Type I RM systems of CC133/771 and CC398 were identified as CAG(N)5RTGA and ACC(N)5RTGA, respectively. Assuming that these enzymes recognise the methylation state of adenine, the underlined A and T bases indicate the unique positions of methylation. Target methylation points for enzymes from CC1 were also identified. The methylation points for CC1-1 are CCAY(N)5TTAA and those for CC1-2 are CCAY(N)6 TGT with the underline indicating the adenine methylation site thus clearing up the ambiguity noted previously (Roberts et al. 2013, Nucleic Acids Res 41:7472-7484) for the half sites containing two adenine bases.


Subject(s)
Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Deoxyribonucleases, Type I Site-Specific/metabolism , Gene Transfer, Horizontal , Livestock/microbiology , Methicillin-Resistant Staphylococcus aureus/enzymology , Milk/microbiology , Staphylococcal Infections/microbiology , Adenine/metabolism , Amino Acid Sequence , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Base Sequence , Cattle , DNA Methylation , DNA, Bacterial/genetics , Deoxyribonucleases, Type I Site-Specific/genetics , Drug Resistance, Bacterial/genetics , Genotype , Host-Pathogen Interactions , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Molecular Sequence Data , Phenotype , Staphylococcal Infections/drug therapy , Staphylococcal Infections/transmission , Substrate Specificity , Virulence/genetics
7.
Nucleic Acids Res ; 44(9): 4289-303, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27095198

ABSTRACT

The protein Ocr (overcome classical restriction) from bacteriophage T7 acts as a mimic of DNA and inhibits all Type I restriction/modification (RM) enzymes. Ocr is a homodimer of 116 amino acids and adopts an elongated structure that resembles the shape of a bent 24 bp DNA molecule. Each monomer includes 34 acidic residues and only six basic residues. We have delineated the mimicry of Ocr by focusing on the electrostatic contribution of its negatively charged amino acids using directed evolution of a synthetic form of Ocr, termed pocr, in which all of the 34 acidic residues were substituted for a neutral amino acid. In vivo analyses confirmed that pocr did not display any antirestriction activity. Here, we have subjected the gene encoding pocr to several rounds of directed evolution in which codons for the corresponding acidic residues found in Ocr were specifically re-introduced. An in vivo selection assay was used to detect antirestriction activity after each round of mutation. Our results demonstrate the variation in importance of the acidic residues in regions of Ocr corresponding to different parts of the DNA target which it is mimicking and for the avoidance of deleterious effects on the growth of the host.


Subject(s)
Viral Proteins/genetics , Amino Acid Sequence , Bacteriophage T7/genetics , Directed Molecular Evolution , Molecular Mimicry , Protein Binding , Protein Folding , Viral Proteins/chemistry
8.
Biochem Biophys Res Commun ; 449(1): 120-5, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24813995

ABSTRACT

EcoP15I is a Type III DNA restriction and modification enzyme of Escherichia coli. We show that it contains two modification (Mod) subunits for sequence-specific methylation of DNA and one copy of a restriction endonuclease (Res) subunit for cleavage of DNA containing unmethylated target sequences. Previously the Mod2 dimer in the presence of cofactors was shown to use nucleotide flipping to gain access to the adenine base targeted for methylation (Reddy and Rao, J. Mol. Biol. 298 (2000) 597-610.). Surprisingly the Mod2 enzyme also appeared to flip a second adenine in the target sequence, one which was not subject to methylation. We show using fluorescence lifetime measurements of the adenine analogue, 2-aminopurine, that only the methylatable adenine undergoes flipping by the complete Res1Mod2 enzyme and that this occurs even in the absence of cofactors. We suggest that this is due to activation of the Mod2 core by the Res subunit.


Subject(s)
2-Aminopurine/chemistry , DNA Methylation , DNA Restriction-Modification Enzymes/chemistry , DNA/chemistry , Site-Specific DNA-Methyltransferase (Adenine-Specific)/chemistry , Spectrometry, Fluorescence/methods , Binding Sites , Enzyme Activation , Substrate Specificity
9.
J R Soc Interface ; 11(91): 20130850, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24258154

ABSTRACT

Mechanogated channels are fundamental components of bacterial cells that enable retention of physical integrity during extreme increases in cell turgor. Optical tweezers combined with microfluidics have been used to study the fate of individual Escherichia coli cells lacking such channels when subjected to a bursting stress caused by increased turgor. Fluorescence-activated cell sorting and electron microscopy complement these studies. These analyses show that lysis occurs with a high probability, but the precise path differs between individual cells. By monitoring the loss of cytoplasmic green fluorescent protein, we have determined that some cells release this protein but remain phase dark (granular) consistent with the retention of the majority of large proteins. By contrast, most cells suffer cataclysmic wall failure leading to loss of granularity but with the retention of DNA and overall cell shape (protein-depleted ghosts). The time span of these events induced by hypo-osmotic shock varies but is of the order of milliseconds. The data are interpreted in terms of the timing of mechanosensitive channel gating relative to osmotically induced water influx.


Subject(s)
Cell Wall/physiology , Escherichia coli/cytology , Mechanotransduction, Cellular/physiology , Bacterial Physiological Phenomena , Cell Membrane/metabolism , Cell Separation , Cell Wall/metabolism , Cytoplasm/metabolism , DNA/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Flow Cytometry , Green Fluorescent Proteins/metabolism , Microfluidics , Microscopy, Electron , Microscopy, Phase-Contrast , Optical Tweezers , Osmotic Pressure , Pressure , Time Factors
10.
Nucleic Acids Res ; 42(1): 20-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24068554

ABSTRACT

Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we discuss aspects of the biochemistry, biology and regulation of Type I REases, and of the mechanisms that bacteriophages and plasmids have evolved to evade them. Type I REases have a remarkable ability to change sequence specificity by domain shuffling and rearrangements. We summarize the classic experiments and observations that led to this discovery, and we discuss how this ability depends on the modular organizations of the enzymes and of their S subunits. Finally, we describe examples of Type II restriction-modification systems that have features in common with Type I enzymes, with emphasis on the varied Type IIG enzymes.


Subject(s)
Deoxyribonucleases, Type I Site-Specific/chemistry , Deoxyribonucleases, Type I Site-Specific/metabolism , Base Sequence , DNA/chemistry , Deoxyribonucleases, Type I Site-Specific/classification
11.
Nucleic Acids Res ; 42(1): 45-55, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23863841

ABSTRACT

Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.


Subject(s)
Deoxyribonucleases, Type III Site-Specific/metabolism , Coliphages/enzymology , DNA Cleavage , DNA Modification Methylases/genetics , Deoxyribonucleases, Type III Site-Specific/chemistry , Deoxyribonucleases, Type III Site-Specific/genetics , Deoxyribonucleases, Type III Site-Specific/history , History, 20th Century , History, 21st Century
12.
Nucleic Acids Res ; 42(1): 3-19, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24141096

ABSTRACT

In the early 1950's, 'host-controlled variation in bacterial viruses' was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.


Subject(s)
DNA Restriction Enzymes/history , DNA Modification Methylases/history , Deoxyribonucleases, Type I Site-Specific/history , Deoxyribonucleases, Type II Site-Specific/history , Deoxyribonucleases, Type III Site-Specific/history , History, 20th Century
13.
Biochim Biophys Acta ; 1844(3): 505-11, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24368349

ABSTRACT

Anti-restriction and anti-modification (anti-RM) is the ability to prevent cleavage by DNA restriction-modification (RM) systems of foreign DNA entering a new bacterial host. The evolutionary consequence of anti-RM is the enhanced dissemination of mobile genetic elements. Homologues of ArdA anti-RM proteins are encoded by genes present in many mobile genetic elements such as conjugative plasmids and transposons within bacterial genomes. The ArdA proteins cause anti-RM by mimicking the DNA structure bound by Type I RM enzymes. We have investigated ArdA proteins from the genomes of Enterococcus faecalis V583, Staphylococcus aureus Mu50 and Bacteroides fragilis NCTC 9343, and compared them to the ArdA protein expressed by the conjugative transposon Tn916. We find that despite having very different structural stability and secondary structure content, they can all bind to the EcoKI methyltransferase, a core component of the EcoKI Type I RM system. This finding indicates that the less structured ArdA proteins become fully folded upon binding. The ability of ArdA from diverse mobile elements to inhibit Type I RM systems from other bacteria suggests that they are an advantage for transfer not only between closely-related bacteria but also between more distantly related bacterial species.


Subject(s)
Escherichia coli K12/metabolism , Escherichia coli Proteins/metabolism , Interspersed Repetitive Sequences , Repressor Proteins/metabolism , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Chromatography, Gel , Circular Dichroism , Escherichia coli K12/enzymology , Escherichia coli Proteins/chemistry , Models, Molecular , Protein Binding , Protein Denaturation , Protein Structure, Secondary , Repressor Proteins/chemistry
15.
Methods Mol Biol ; 1054: 1-9, 2013.
Article in English | MEDLINE | ID: mdl-23913282

ABSTRACT

The technique of gel electrophoresis is now firmly established as a routine laboratory method for analyzing DNA. Here, we describe the development of the methodology as well as a brief explanation of how the technique works. There is a short introduction to pulsed-field agarose gel electrophoresis, which represents a critical advancement in the method that facilitates the analysis of very large fragments of DNA. Finally, theoretical considerations are included.


Subject(s)
DNA/chemistry , Electrophoresis, Agar Gel/methods , Electrophoresis, Gel, Pulsed-Field/methods , Humans , Sepharose/chemistry
16.
FEBS J ; 280(19): 4903-14, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23910724

ABSTRACT

ArdA antirestriction proteins are encoded by genes present in many conjugative plasmids and transposons within bacterial genomes. Antirestriction is the ability to prevent cleavage of foreign incoming DNA by restriction-modification (RM) systems. Antimodification, the ability to inhibit modification by the RM system, can also be observed with some antirestriction proteins. As these mobile genetic elements can transfer antibiotic resistance genes, the ArdA proteins assist their spread. The consequence of antirestriction is therefore the enhanced dissemination of mobile genetic elements. ArdA proteins cause antirestriction by mimicking the DNA structure bound by Type I RM enzymes. The crystal structure of ArdA showed it to be a dimeric protein with a highly elongated curved cylindrical shape [McMahon SA et al. (2009) Nucleic Acids Res 37, 4887-4897]. Each monomer has three domains covered with negatively charged side chains and a very small interface with the other monomer. We investigated the role of the domain forming the dimer interface for ArdA activity via site-directed mutagenesis. The antirestriction activity of ArdA was maintained when up to seven mutations per monomer were made or the interface was disrupted such that the protein could only exist as a monomer. The antimodification activity of ArdA was lost upon mutation of this domain. The ability of the monomeric form of ArdA to function in antirestriction suggests, first, that it can bind independently to the restriction subunit or the modification subunits of the RM enzyme, and second, that the many ArdA homologues with long amino acid extensions, present in sequence databases, may be active in antirestriction.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Repressor Proteins/chemistry , Repressor Proteins/genetics , DNA Restriction Enzymes/chemistry , DNA Restriction Enzymes/genetics , DNA Restriction Enzymes/metabolism , Escherichia coli Proteins/metabolism , Gene Transfer, Horizontal/genetics , Mutation , Protein Multimerization/genetics , Protein Multimerization/physiology , Protein Structure, Secondary , Repressor Proteins/metabolism
17.
Nucleic Acids Res ; 41(15): 7472-84, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23771140

ABSTRACT

A limited number of Methicillin-resistant Staphylococcus aureus (MRSA) clones are responsible for MRSA infections worldwide, and those of different lineages carry unique Type I restriction-modification (RM) variants. We have identified the specific DNA sequence targets for the dominant MRSA lineages CC1, CC5, CC8 and ST239. We experimentally demonstrate that this RM system is sufficient to block horizontal gene transfer between clinically important MRSA, confirming the bioinformatic evidence that each lineage is evolving independently. Target sites are distributed randomly in S. aureus genomes, except in a set of large conjugative plasmids encoding resistance genes that show evidence of spreading between two successful MRSA lineages. This analysis of the identification and distribution of target sites explains evolutionary patterns in a pathogenic bacterium. We show that a lack of specific target sites enables plasmids to evade the Type I RM system thereby contributing to the evolution of increasingly resistant community and hospital MRSA.


Subject(s)
DNA Restriction-Modification Enzymes/metabolism , Deoxyribonucleases, Type I Site-Specific/metabolism , Evolution, Molecular , Gene Transfer, Horizontal , Genome, Bacterial , Methicillin-Resistant Staphylococcus aureus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Computational Biology/methods , DNA Cleavage , DNA Restriction-Modification Enzymes/genetics , DNA, Bacterial/genetics , Deoxyribonucleases, Type I Site-Specific/genetics , Gene Library , Methicillin-Resistant Staphylococcus aureus/enzymology , Open Reading Frames , Plasmids/genetics , Plasmids/metabolism
18.
Nucleic Acids Res ; 41(9): 4999-5009, 2013 May.
Article in English | MEDLINE | ID: mdl-23525471

ABSTRACT

The type II restriction endonuclease TseI recognizes the DNA target sequence 5'-G^CWGC-3' (where W = A or T) and cleaves after the first G to produce fragments with three-base 5'-overhangs. We have determined that it is a dimeric protein capable of cleaving not only its target sequence but also one containing A:A or T:T mismatches at the central base pair in the target sequence. The cleavage of targets containing these mismatches is as efficient as cleavage of the correct target sequence containing a central A:T base pair. The cleavage mechanism does not apparently use a base flipping mechanism as found for some other type II restriction endonuclease recognizing similarly degenerate target sequences. The ability of TseI to cleave targets with mismatches means that it can cleave the unusual DNA hairpin structures containing A:A or T:T mismatches formed by the repetitive DNA sequences associated with Huntington's disease (CAG repeats) and myotonic dystrophy type 1 (CTG repeats).


Subject(s)
Base Pair Mismatch , DNA Cleavage , Deoxyribonucleases, Type II Site-Specific/metabolism , Trinucleotide Repeats , Adenine/chemistry , DNA/chemistry , Deoxyribonucleases, Type II Site-Specific/chemistry , Thymine/chemistry
19.
Biochemistry ; 52(10): 1677-85, 2013 Mar 12.
Article in English | MEDLINE | ID: mdl-23409782

ABSTRACT

A quantitative understanding of how conformational transitions contribute to enzyme catalysis and specificity remains a fundamental challenge. A suite of biophysical approaches was used to reveal several transient states of the enzyme-substrate complexes of the model DNA cytosine methyltransferase M.HhaI. Multidimensional, transverse relaxation-optimized nuclear magnetic resonance (NMR) experiments show that M.HhaI has the same conformation with noncognate and cognate DNA sequences. The high-affinity cognatelike mode requires the formation of a subset of protein-DNA interactions that drive the flipping of the target base from the helix to the active site. Noncognate substrates lacking these interactions undergo slow base flipping, and fluorescence tracking of the catalytic loop corroborates the NMR evidence of a loose, nonspecific binding mode prior to base flipping and subsequent closure of the catalytic loop. This slow flipping transition defines the rate-limiting step for the methylation of noncognate sequences. Additionally, we present spectroscopic evidence of an intermediate along the base flipping pathway that has been predicted but never previously observed. These findings provide important details of how conformational rearrangements are used to balance specificity with catalytic efficiency.


Subject(s)
DNA Methylation/physiology , DNA-Cytosine Methylases/chemistry , DNA-Cytosine Methylases/metabolism , DNA/chemistry , DNA/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain/genetics , DNA-Cytosine Methylases/genetics , Kinetics , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Spectrometry, Fluorescence , Substrate Specificity
20.
Nucleic Acids Res ; 40(21): 10916-24, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23002145

ABSTRACT

The EcoKI DNA methyltransferase is a trimeric protein comprised of two modification subunits (M) and one sequence specificity subunit (S). This enzyme forms the core of the EcoKI restriction/modification (RM) enzyme. The 3' end of the gene encoding the M subunit overlaps by 1 nt the start of the gene for the S subunit. Translation from the two different open reading frames is translationally coupled. Mutagenesis to remove the frameshift and fuse the two subunits together produces a functional RM enzyme in vivo with the same properties as the natural EcoKI system. The fusion protein can be purified and forms an active restriction enzyme upon addition of restriction subunits and of additional M subunit. The Type I RM systems are grouped into families, IA to IE, defined by complementation, hybridization and sequence similarity. The fusion protein forms an evolutionary intermediate form lying between the Type IA family of RM enzymes and the Type IB family of RM enzymes which have the frameshift located at a different part of the gene sequence.


Subject(s)
Bacterial Proteins/genetics , DNA Restriction-Modification Enzymes/genetics , Escherichia coli Proteins/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics , Artificial Gene Fusion , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Coliphages/genetics , DNA Cleavage , DNA Restriction Enzymes/genetics , DNA Restriction Enzymes/metabolism , DNA Restriction-Modification Enzymes/chemistry , DNA Restriction-Modification Enzymes/metabolism , Deoxyribonucleases, Type I Site-Specific/genetics , Deoxyribonucleases, Type I Site-Specific/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Frameshifting, Ribosomal , Mutagenesis , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Site-Specific DNA-Methyltransferase (Adenine-Specific)/chemistry , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Transformation, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...