Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
RSC Adv ; 11(35): 21447-21462, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-35478831

ABSTRACT

This review provides a current summary of the major sources and distribution of ocean plastic contamination, their potential environmental effects, and prospects towards the mitigation of plastic pollution. A characterization between micro and macro plastics has been established, along with a comprehensive discussion of the most common plastic waste sources that end up in aquatic environments within these categories. Distribution of these sources stems mainly from improper waste management, road runoff, and wastewater pathways, along with potential routes of prevention. The environmental impact of ocean plastics is not yet fully understood, and as such, current research on the potential adverse health effects and impact on marine habitats has been discussed. With increasing environmental damage and economic losses estimated at $US 1.5 trillion, the challenge of ocean plastics needs to be at the forefront of political and societal discussions. Efforts to increase the feasibility of collected ocean plastics through value-added commercial products and development of an international supply chain has been explored. An integrative, global approach towards addressing the growing ocean plastic problem has been presented.

2.
Materials (Basel) ; 11(11)2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30380744

ABSTRACT

In this study, polyethersulfone (PES) was blended into epoxy resins to improve the fracture toughness of the epoxy resin without loss of mechanical properties, and then two grades of pristine graphene nanoplatelets (GnPs) were separately introduced into the PES/epoxy system to fabricate thermally conductive GnPs/PES/epoxy composites with high toughness as well as high stiffness. It was observed that the addition of GnPs obviously affected the final phase morphology by suppressing the phase separation process of the PES modified epoxy due to the increased viscosity and cure-reaction rate of PES/epoxy. The GnPs with a larger lateral dimension revealed a greater reinforcing effect, and the inclusion of 3 wt % GnPs (~5 µm in diameter) endowed the PES/epoxy matrix with a good thermal conductivity and improved the tensile, flexural, and storage modulus by 27.1%, 17.5%, and 15.6% (at 30 °Ð¡), respectively. Meanwhile, the fracture toughness was further enhanced by about 29.5% relative to the PES modified epoxy at the same GnPs concentration. The positive results suggest that the modification of epoxy resins using the PES and GnPs is an attractive approach for fabricating tougher and stiffer epoxy-based nanocomposites with multifunctional properties, which could widen the industrial applications of the epoxy resins.

3.
Nanotechnology ; 29(31): 31LT02, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-29771682

ABSTRACT

Graphene nanoplatelets (GnP) can be made into a thin 'paper' through vacuum filtration of GnP suspension. Electrodes were fabricated from the compressed GnP paper and then by coating the surface with epoxy. The electrostatic actuator was constructed from two parallel-aligned composite papers fixed at the anode and a cathode connected to ground. The two composite papers would then separate when a voltage was applied. The GnP paper was also modified to increase surface area by introducing porosity or adding ∼10 wt% C750 (GnP with diameter less than 1 µm); or changing the relative permittivity by adding barium titanate particles; or combining these two effects by adding CNCs. Overall the output work could be significantly improved to over 400%.

4.
ACS Appl Mater Interfaces ; 6(15): 12126-36, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25036977

ABSTRACT

Exfoliated graphite nanoplatelets (GnP) has been investigated as an electrocatalyst support for fuel cell applications. GnP-supported Pt catalysts were synthesized by a microwave process in the presence of room temperature ionic liquids (RTILs). Thermal-oxidation resistance of GnP and GnP-supported Pt catalysts was studied by thermogravimetric analysis and compared with a variety of other carbon nanostructures: carbon black, graphite nanofiber, single- and multiwalled carbon nanotubes. GnP showed the best thermal-oxidative stability. The results obtained from X-ray diffraction, X-ray photoelectron spectroscopy, electrochemical testing, scanning and transmission electron microscopy showed that the RTIL synthesis method resulted in size reduction of Pt nanoparticle, improvement of Pt dispersion on GnP, and identification of the relationships between the mean size of Pt particles with increasing RTIL content. The interaction of Pt particles-GnP is stronger than that of a commercial Pt-CB, and the Pt/GnP catalysts prepared by this method have excellent electrocatalytic activity and stability for methanol oxidation.

5.
Nanotechnology ; 25(7): 075702, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24451202

ABSTRACT

Graphene oxide (GO) is a potential precursor for the bulk production of graphene as the synthetic route is simple and cost-effective. Typically, reduction of GO is a time-consuming process and involves either toxic/hazardous reducing agents or high temperature treatment. Herein, we report the role of intercalated water and thickness of GO films towards the reduction of GO employing simple camera flash. A fast, simple and single camera flash instantaneously causes the deoxygenation reaction of GO without employing hazardous/toxic chemical reductants at room temperature. Successful reduction of GO employing camera flash has been verified via XRD, Raman and UV-vis spectroscopic analyses. Flash-reduced graphene shows a relatively high conductivity value of 740 S m(-1) with a C/O ratio of around 9.5. Intercalated water molecules facilitate the reduction by electron-hole pair formation. It has also been found that the intercalated water facilitates the reduction of GO up to a certain film thickness. However, the intensity of light passing through to the backside of a too thick film decreases significantly, causing incomplete reduction.

6.
ACS Appl Mater Interfaces ; 4(10): 5079-85, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-22991937

ABSTRACT

The difficulty of dispersing cellulose nanofibers (CNFs) in hydrophobic polymers such as poly(lactic acid) (PLA) remains a major obstacle to the expansion of cellulose nanocomposite applications. In this work, we employed the solvent evaporation technique commonly used for drug microencapsulation to suspend PLA in water as microparticles. The suspension of the microparticles was easily mixed with the CNFs prepared by high-pressure homogenization. Water removal by membrane filtration produced CNF sheets filled with the particles. Compression molding of the stacked sheets resulted in nanocomposites with good CNF dispersions. Increases in the modulus and strength (up to 58% and 210%, respectively) demonstrated the load-bearing capability of the CNF network in the composites.


Subject(s)
Cellulose/chemistry , Lactic Acid/chemistry , Nanofibers/chemistry , Polymers/chemistry , Water/chemistry , Elastic Modulus , Hydrophobic and Hydrophilic Interactions , Polyesters , Tensile Strength
7.
J Nanosci Nanotechnol ; 11(2): 1242-7, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21456166

ABSTRACT

Electrospinning is a rapidly developing technology that provides a unique way to produce novel polymer nanofibers with controllable diameters. Cellulose nitrate non-woven mats of submicron-sized fibers with diameters of 100-1200 nm were prepared. The effects of processing equipment collector design void gap, and steel drum coated with polyvinylidene dichloride (PVDC) were investigated. The PVDC layer applied to the rotating drum aided in fiber harvesting. Electron microscopy (FESEM and ESEM) studies of as-spun fibers revealed that the morphology of cellulose nitrate fibers depended on the collector type and solution viscosity. When a rotating steel drum was employed a random morphology was observed, while the void gap collector produced aligned fiber mats. Increases in viscosity lead to larger diameter fibers. The fibers collected were free from all residual solvents and could undergo oxygen plasma treatment to increase the hydropholicity.

8.
ACS Appl Mater Interfaces ; 3(4): 1325-32, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21438537

ABSTRACT

Monodispersed Au nanoparticles are synthesized on the surface of exfoliated graphene nanoplatelets (GNP) in the presence of polyethyleneimine (PEI) with microwave assisted heating. A highly structured layered Au/GNP "paper" with good flexibility and mechanical robustness is prepared by vacuum assisted self-assembly. The thermal and electrical conductivity of the hybrid paper with and without the Au nanoparticles are investigated after different experimental processing conditions including thermal annealing and cold compaction. Annealing effectively decomposes and removes the adsorbed PEI molecules and improves thermal contact between Au/GNP particles, whereas cold compaction reduces porosity and induces stronger alignment of the Au/GNP within the hybrid paper. Both approaches lead to improvement in electrical and thermal conductivity. It is also found that adjacent GNP particles are electrically connected by the Au nanoparticles but thermally disconnected. It is believed that phonons are scattered at the Au/GNP interfaces, whereas electrons can tunnel across this interface, resulting in a separation of electron and phonon transport within this hybrid paper.

9.
J Nanosci Nanotechnol ; 10(9): 5810-3, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21133109

ABSTRACT

Cellulose nitrate nonwoven mats of submicron-sized fibers (100-1200 nm in diameter) were obtained by electrospinning cellulose nitrate solutions. Two solvent systems were evaluated. A 70:30 (wt) ratio of ethanol to acetone and a 60:40 (wt) ratio of tetrahydrofuran (THF) to N,N-dimethylformamide (DMF) were studied. The effects of the two solvent systems, and type two different collectors; void gap, and steel drum coated with polyvinylidene dichloride (PVDC), were investigated. The PVDC layer applied to the rotating drum aided in fiber harvesting. Electron microscopy (FESEM and ESEM) studies of as-spun fibers revealed that the morphology of cellulose nitrate fibers depended on the collector type and solution viscosity. When a rotating steel drum was employed a random morphology was observed, while the void gap collector produced aligned fiber mats. Increases in viscosity lead to larger diameter fibers.


Subject(s)
Collodion/chemistry , Nanofibers/chemistry , Electrochemistry , Microscopy, Electron, Scanning , Nanofibers/ultrastructure , Nanotechnology
10.
Biosens Bioelectron ; 26(4): 1612-7, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20833013

ABSTRACT

Electrospinning is a versatile and cost effective method to fabricate biocompatible nanofibrous materials. The novel nanostructure significantly increases the surface area and mass transfer rate, which improves the biochemical binding effect and sensor signal to noise ratio. This paper presents the electrospinning method of nitrocellulose nanofibrous membrane and its antibody functionalization for application of bacterial and viral pathogen detection. The capillary action of the nanofibrous membrane is further enhanced using oxygen plasma treatment. An electrospun biosensor is designed based on capillary separation and conductometric immunoassay. The silver electrode is fabricated using spray deposition method which is non-invasive for the electrospun nanofibers. The surface functionalization and sensor assembly process retain the unique fiber morphology. The antibody attachment and pathogen binding effect is verified using the confocal laser scanning microscope (CLSM) and scanning electronic microscope (SEM). The electrospun biosensor exhibits linear response to both microbial samples, Escherichia coli O157:H7 and bovine viral diarrhea virus (BVDV) sample. The detection time of the biosensor is 8 min, and the detection limit is 61 CFU/mL and 10(3)CCID/mL for bacterial and viral samples, respectively. With the advantage of efficient antibody functionalization, excellent capillary capability, and relatively low cost, the electrospinning process and surface functionalization method can be implemented to produce nanofibrous capture membrane for different immuno-detection applications.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Diarrhea Viruses, Bovine Viral/isolation & purification , Escherichia coli O157/isolation & purification , Nanofibers , Animals , Antibodies, Bacterial , Antibodies, Immobilized , Antibodies, Viral , Cattle , Collodion/chemistry , Diarrhea Viruses, Bovine Viral/immunology , Diarrhea Viruses, Bovine Viral/pathogenicity , Electrochemical Techniques , Escherichia coli O157/immunology , Escherichia coli O157/pathogenicity , Mice , Microscopy, Confocal , Microscopy, Electron, Scanning , Nanofibers/chemistry , Nanofibers/ultrastructure , Nanotechnology/instrumentation
11.
ACS Appl Mater Interfaces ; 2(8): 2293-300, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20735100

ABSTRACT

The diverse physical and chemical aspects of graphene nanosheets such as particle size surface area and edge chemistry were combined to fabricate a new supercapacitor electrode architecture consisting of a highly aligned network of large-sized nanosheets as a series of current collectors within a multilayer configuration of bulk electrode. Capillary driven self-assembly of monolayers of graphene nanosheets was employed to create a flexible, multilayer, free-standing film of highly hydrophobic nanosheets over large macroscopic areas. This nanoarchitecture exhibits a high-frequency capacitative response and a nearly rectangular cyclic voltammogram at 1000 mV/s scanning rate and possesses a rapid current response, small equivalent series resistance (ESR), and fast ionic diffusion for high-power electrical double-layer capacitor (EDLC) application.


Subject(s)
Carbon/chemistry , Electrodes , Nanotechnology/methods , Electric Capacitance , Electric Conductivity , Hydrophobic and Hydrophilic Interactions , Water/chemistry
12.
Nano Lett ; 9(1): 167-72, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19113892

ABSTRACT

A monolayer of ultrathin sheets of highly hydrophobic graphene nanosheets was prepared on a large area substrate via self-assembly at the liquid-liquid interface. Driven by the minimization of interfacial energy these planar shaped graphene nanosheets produce a close packed monolayer structure at the liquid-liquid interface. This monolayer film shows high electrical conductivity of more than 1000 S/cm and an optical transmission of more than 70% at a wavelength of 550 nm. Interfacial self-assembly of these nanosheets demonstrates a promising route for the application of this novel material in optoelectronics applications.


Subject(s)
Crystallization/methods , Graphite/chemistry , Membranes, Artificial , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Solutions , Surface Properties
13.
ACS Nano ; 2(9): 1825-32, 2008 Sep 23.
Article in English | MEDLINE | ID: mdl-19206421

ABSTRACT

We report the novel fabrication of a highly sensitive, selective, fast responding, and affordable amperometric glucose biosensor using exfoliated graphite nanoplatelets (xGnPs) decorated with Pt and Pd nanoparticles. Nafion was used to solubilize metal-decorated graphite nanoplatelets, and a simple cast method with high content organic solvent (85 wt %) was used to prepare the biosensors. The addition of precious metal nanoparticles such as platinum (Pt) and palladium (Pd) to xGnP increased the electroactive area of the electrode and substantially decreased the overpotential in the detection of hydrogen peroxide. The Pt-xGnP glucose biosensor had a sensitivity of 61.5+/-0.6 microA/(mM x cm(2)) and gave a linear response up to 20 mM. The response time and detection limit (S/N=3) were determined to be 2 s and 1 microM, respectively. Therefore, this novel glucose biosensor based on the Pt nanoparticle coated xGnP is among the best reported to date in both sensing performance and production cost. In addition, the effects of metal nanoparticle loading and the particle size on the biosensor performance were systematically investigated.


Subject(s)
Biosensing Techniques/instrumentation , Glucose Oxidase/chemistry , Glucose/analysis , Graphite/chemistry , Nanostructures/chemistry , Palladium/chemistry , Platinum/chemistry , Crystallization/methods , Electrochemistry/instrumentation , Electrochemistry/methods , Enzymes, Immobilized/chemistry , Equipment Design , Equipment Failure Analysis , Glucose/chemistry , Macromolecular Substances/chemistry , Materials Testing , Microelectrodes , Molecular Conformation , Nanostructures/ultrastructure , Nanotechnology/instrumentation , Particle Size , Reproducibility of Results , Sensitivity and Specificity , Surface Properties
14.
J Nanosci Nanotechnol ; 6(2): 464-71, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16573046

ABSTRACT

The thermophysical properties of unsaturated polyester (UPE) nanocomposites reinforced by organo-montmorillonite clay nanoplatelets are reported. The organo-clay nanoplatelets were sonicated in acetone for 2 hours to be dispersed in the UPE matrix. Vacuum extraction removed not only the acetone but also the styrene present in the UPE solution. The same mechanical and thermophysical properties of UPE were regained after adding the lost amount of styrene to the UPE solution. Both delaminated and intercalated clay morphologies were observed by transmission electron microscopy. It was found that the sonication process was effective to delaminate clay nanoplatelets for more homogeneous dispersion, dependent on organic chemical modifications for clay nanoplatelets. A higher storage modulus enhancement was obtained when the organo-clay nanoplatelets were delaminated and more homogeneously dispersed. The reinforcing effect of both delaminated and intercalated clay nanoplatelets was theoretically evaluated with the Halpin-Tsai equations. It was evaluated that the aspect ratio of delaminated clay nanoplatelets was approximately 150. The increase of the storage modulus below and above the glass transition temperature was achieved without reducing glass transition temperature and Izod impact strength with increasing clay content.


Subject(s)
Nanotechnology , Polyesters/chemistry , Silicates/chemistry , Materials Testing , Microscopy, Electron, Transmission
15.
J Nanosci Nanotechnol ; 5(4): 497-526, 2005 Apr.
Article in English | MEDLINE | ID: mdl-16004113

ABSTRACT

There is growing interest in developing bio-based products and innovative process technologies that can reduce the dependence on fossil fuel and move to a sustainable materials basis. Biodegradable bio-based nanocomposites are the next generation of materials for the future. Renewable resource-based biodegradable polymers including cellulosic plastic (plastic made from wood), corn-derived plastics, and polyhydroxyalkanoates (plastics made from bacterial sources) are some of the potential biopolymers which, in combination with nanoclay reinforcement, can produce nanocomposites for a variety of applications. Nanocomposites of this category are expected to possess improved strength and stiffness with little sacrifice of toughness, reduced gas/water vapor permeability, a lower coefficient of thermal expansion, and an increased heat deflection temperature, opening an opportunity for the use of new, high performance, lightweight green nanocomposite materials to replace conventional petroleum-based composites. The present review addresses this green material, including its technical difficulties and their solutions.


Subject(s)
Biocompatible Materials , Biodegradation, Environmental , Nanotechnology/methods , Nanotechnology/trends , Alkanes/chemistry , Biopolymers , Cellulose/chemistry , Microscopy, Electron, Transmission , Models, Chemical , Petroleum , Plastics/chemistry , Polyesters/chemistry , Polymers/chemistry , Silicates/chemistry , Temperature , X-Ray Diffraction
16.
Biomacromolecules ; 5(6): 2281-8, 2004.
Article in English | MEDLINE | ID: mdl-15530043

ABSTRACT

"Green" nanocomposites have been successfully fabricated from cellulose acetate (CA) powder, eco-friendly triethyl citrate (TEC) plasticizer and organically modified clay. The effect of the amount of plasticizer varying from 15 to 40 wt % on the performance of the nanocomposites has been evaluated. The morphologies of these nanocomposites were evaluated through X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) studies. The mechanical properties of nanocomposites are correlated with the XRD and TEM observations. Cellulosic plastic-based nanocomposites with 20 wt % TEC plasticizer and 5 wt % organoclay showed better intercalation and an exfoliated structure than the counterpart having 30/40 wt % plasticizers. The tensile strength, modulus and thermal stability of cellulosic plastic reinforced with organoclay showed a decreasing trend with an increase of plasticizer content from 20 to 40 wt %. The nano-reinforcement at the lower volume fractions (phi < or = 0.02) reduced the water vapor permeability of cellulosic plastic by 2 times and the relative permeability better fits with larger platelet aspect ratios (alpha = 150).


Subject(s)
Aluminum Silicates/chemistry , Cellulose/analogs & derivatives , Cellulose/chemistry , Citrates/chemistry , Nanotechnology/methods , Plastics/chemistry , Biocompatible Materials , Clay , Hot Temperature , Intercalating Agents/pharmacology , Materials Testing , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Plasticizers , Temperature , Tensile Strength , Time Factors , Water/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...