Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Crit Rev Anal Chem ; : 1-23, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37083454

ABSTRACT

The review presents methods that are used frequently for multi-analytical study of fossil resins. The preliminary characterization relies on physical methods such as microhardness, density and fluorescence in UV light measurements. The spectroscopic methods: infrared spectroscopy, Raman spectroscopy, fluorescence spectroscopy are also presented in the paper. Besides that, the review also contains examples of the application of chromatographic methods: gas chromatography, thin layer chromatography, high-performance liquid chromatography, two-dimensional gas chromatography coupled to time-of-flight mass spectrometry as well as sample preparation methods for chromatographic studies such as pyrolysis. Additionally, thermal methods such as thermogravimetric analysis and differential scanning calorimetry also are covered by the review. Beside the examples of application, a detailed description with development history and perspective for further improvement are presented for each method. Moreover, fit-for-purpose assessment of each method is illustrated based on many examples from literature. The paper also contains examples of the application of multivariate statistical analysis and chemometric methods for comparing multiple properties of different fossil resin specimens for differentiation and classification purposes.

2.
Chemosphere ; 308(Pt 1): 136133, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36041528

ABSTRACT

We present the first comprehensive study on the occurrence of tributyltin (TBT) in the Odra River estuary (SW Baltic Sea) that encompasses both densely populated and urbanized agglomeration Szczecin city, and sparsely populated biosphere reserves "Natura 2000". Relationship between TBT and physicochemical parameters of bottom sediments such as granulometry total organic carbon (TOC), total nitrogen (TN), acid volatile sulfide (AVS), As, and metals: Ba, Cd, Co, Cr, Cu, Fe, Hg, Ni, Mn, Mo, Pb, Sn, and Zn was investigated in 120 samples collected in 2017 and 2018. The highest TBT concentrations were over 3000 ng g-1 (dry weight). They were observed in samples collected in the vicinity of the ship maintenance zones of the Szczecin city. Despite the EU ban on its use since 2003, TBT is still present in the environment. Environmetrics analyses such as correlation, cluster, and principal component analysis of obtained results revealed that the main source of sediments contamination by TBT, metalloids, and metals is likely related to the maritime industry: shipyards, ship maintenance as well as ports and marines. TBT is still present in the bottom sediments because of its emission to the environment with dust and paint chips formed during sandblasting cleaning of ship surfaces. The pollutant is further transported with water current to remote localization in the Szczecin Lagoon. Slow water exchange between the Szczecin Lagoon and the Baltic Sea favors accumulation of pollutants in the lagoon sediments. Therefore, it is necessary to implement environmentally friendly methods into ship maintenance and management of the materials from dredged waterways, harbors, and marinas.


Subject(s)
Mercury , Metalloids , Water Pollutants, Chemical , Cadmium/analysis , Carbon/analysis , Dust/analysis , Environmental Monitoring/methods , Estuaries , Geologic Sediments/analysis , Lead/analysis , Mercury/analysis , Metalloids/analysis , Nitrogen/analysis , Rivers , Sulfides/analysis , Trialkyltin Compounds , Water/analysis , Water Pollutants, Chemical/analysis
3.
Molecules ; 27(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35956795

ABSTRACT

Organotin compounds (OTCs) are among the most hazardous substances found in the marine environment and can be determined by either the ISO 23161 method based on extraction with non-polar organic solvents and gas chromatography analysis or by the recently developed QuEChERS method coupled to liquid chromatography-mass spectrometry (LC-MS/MS). To date, the QuEChERS LC/MS and ISO 23161 methods have not been compared in terms of their fit-for-purpose and reliability in the determination of OTCs in bottom sediments. In the case of ISO 23161, due to a large number of interferences gas chromatography-mass spectrometry was not suitable for the determination of OTCs contrary to more selective determination by gas chromatography with an atomic emission detector. Moreover, it has been found that the derivatization of OTCs to volatile compounds, which required prior gas chromatography determination, was strongly affected by the sediments' matrices. As a result, a large amount of reagent was needed for the complete derivatization of the compounds. Contrary to ISO 23161, the QuEChERS LC-MS/MS method did not require the derivatization of OTC and is less prone to interferences. Highly volatile and toxic solvents were not used in the QuEChERS LC-MS/MS method. This makes the method more environmentally friendly according to the principles of green analytical chemistry. QuEChERS LC-MS/MS is suitable for fast and reliable environmental monitoring of OTCs in bottom sediments from the Odra River estuary. However, determination of di- and monobutyltin by the QuEChERS LC-MS/MS method was not possible due to the constraints of the chromatographic system. Hence, further development of this method is needed for monitoring di- and monobutyltin in bottom sediments.


Subject(s)
Organotin Compounds , Rivers , Chromatography, Liquid , Environmental Monitoring/methods , Estuaries , Gas Chromatography-Mass Spectrometry/methods , Organotin Compounds/analysis , Reproducibility of Results , Rivers/chemistry , Solvents/analysis , Tandem Mass Spectrometry
4.
Sci Total Environ ; 828: 154446, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35283119

ABSTRACT

The occurrence of 130 pharmaceutically active compounds (PhACs) in sediments collected from 70 sampling sites in the Odra River estuary (SW Baltic Sea) was investigated. The highest concentration levels of the compounds were found in the vicinity of effluent discharge from two main Szczecin wastewater treatment plants: "Pomorzany" and "Zdroje", and nearby the seaport and shipyard. The highest environmental risks (RQ > 1) were observed for pseudoephedrine (RQ = 14.0), clindamycin (RQ = 7.3), nalidixic acid (RQ = 3.8), carbamazepine (RQ = 1.8), fexofenadine (RQ = 1.4), propranolol (RQ = 1.1), and thiabendazole (RQ = 1.1). RQ for each compound varied depending on the sampling sites. High environmental risk was observed in 30 sampling sites for clindamycin, 22 sampling sites for pseudoephedrine, 19 sampling sites for nalidixic acid, 4 sampling sites for carbamazepine, and 3 sampling sites for fexofenadine. The medium environmental risk (0.1 < RQ < 1) was observed for 16 compounds: amisulpride, amitriptyline, amlodipine, atropine, bisoprolol, chlorpromazine, lincomycin, metoprolol, mirtazapine, moclobemide, ofloxacin, oxazepam, tiapride, tolperisone, verapamil, and xylometazoline. Due to the scarcity of toxicological data related to benthic organisms, only an approximate assessment of the environmental risk of PhACs is possible. Nevertheless, the compounds with medium and high risk should be considered as pollutants of high environmental concern whose occurrence in the environment should remain under close scrutiny.


Subject(s)
Estuaries , Water Pollutants, Chemical , Carbamazepine/analysis , Clindamycin , Environmental Monitoring , Nalidixic Acid , Pharmaceutical Preparations , Pseudoephedrine , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis
5.
Environ Sci Pollut Res Int ; 29(6): 8514-8524, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34490571

ABSTRACT

Carwash wastewater treatment with potassium ferrate (VI) (K2FeO4) was optimized by response surface methodology. The optimum conditions for chemical oxygen demand removal were established a pH 3.5, 0.328 g/L dose of K2FeO4, and with a process duration of 48 min. At these conditions, chemical oxygen demand, total organic carbon, total nitrogen, and total phosphorus decreased by 70.3, 58.9, 73.3, 82.0%, respectively; and the putrid odor was reduced. Simultaneously, the total viable count, total coli count, most probable number of fecal enterococci, and the total proteolytic bacteria count decreased by 89.5, 93.1, 92.9, and 95.0 %, respectively. Comparatively, an application of 0.450 g/L FeCl3·6H2O corresponding to the iron content in 0.328 g/L of K2FeO4 resulted in a decrease of total viable count, total coli count, most probable number of fecal enterococci and the total proteolytic bacteria count only by 38.1, 31.2, 42.9, and 58.0%, respectively. Therefore, flocculation with polyacrylamide anionic flocculant combined with potassium ferrate (VI) oxidation is a more effective alternative to coagulation with FeCl3 and the same flocculant. The use of potassium ferrate (VI) is a viable option for the treatment of carwash wastewater.


Subject(s)
Iron Compounds , Wastewater , Disinfection , Potassium Compounds
6.
Sci Rep ; 11(1): 18556, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535688

ABSTRACT

The paper presents comprehensive mineralogical and geochemical characteristics of Dominican amber-bearing sediments from Siete Cañadas, Hato Mayor Province of the Eastern Mining District (EMD) in the Cordillera Oriental. The characteristics of rocks collected from the borehole in Siete Cañadas area (EMD) were compared with petrography of coaly shales from La Cumbre in the Northern Mining District (NMD). The mineralogy of the rocks was determined using transmitted and reflected light microscopy, scanning electron microscopy, Powder X-ray diffraction and Fourier Transform Raman Spectroscopy. Biomarker analyses by the gas chromatography-mass spectrometry were used to trace the genetic source and transformation stage of organic matter hosted in the core sediments. In this study, the characteristics of rocks from La Cumbre were supplemented with the petrographic data from our studies reported earlier. Based on the findings, it has been concluded that the basins in the investigated parts of the EMD and NMD regions were likely characterized by different, isolated palaeosettings. Transformation and maturation of terrigenous material were affected by locally occurring physicochemical conditions. In both amber deposits, the sedimentation of clastic and organic material proceeded in the presence of marine conditions. In case of the La Cumbre deposit (NMD area), the sedimentation underwent probably in the conditions of the lagoon environment, a shallow maritime lake or periodically flooded plain that facilitated organic matter decomposition and carbonation from meta-lignite to sub-bituminous coal (random reflectance of coal-Rro = 0.39%). In the Siete Cañadas (EMD region), the sedimentation took place in a shallow saltwater basin, where terrigenous material was likely mixed with material found in situ (fauna fossils, carbonate-group minerals) to form the mudstones enriched in bituminous substance of low maturity. The organic matter found in the rocks from both deposits is of mixed terrestrial/marine origin and was deposited in the presence of low oxygen concentration and reducing and/or dysoxic conditions.

7.
Sci Rep ; 10(1): 18283, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106522

ABSTRACT

Fossil resins from Miocene coal deposit (Sarolangun mine, Jambi Province, Sumatra, Indonesia) have been analysed using spectroscopic methods: Raman Spectroscopy (RS), Fourier Transform-Infrared Spectroscopy (FT-IR), 13C Nuclear Magnetic Resonance (13C NMR), Fluorescence Spectroscopy (FS), and Gas Chromatography-Mass Spectrometry (GC-MS) in order to describe their diagnostic features. Simultaneously, glessite, a fossil resin from Upper Oligocene Bitterfeld deposit (Saxony-Anhalt, Germany), originating from similar botanical sources (i.e. angiosperms) was tested with the same analytical methods in order to find similarities and differences between the resins. The resins differ in colour, transparency and amounts of inclusions (resins from Sumatra-yellow, and transparent with few inclusions; glessite-brown-red, translucent with wealth of inclusions). In general, the IR and RS spectra of these resins are very similar, probably because the glessite colour-changing additives can be very subtle and non-observable in the infrared region. The RS spectra revealed also a slight difference in intensity ratio of the 1650/1450 cm-1 bands (0.56 and 0.68 for Sumatra and Germany resins, respectively), indicating a differences in their maturation process. The resins from Sumatra seem to be more mature than glessite from Germany. The excitation-emission (EM-EX) and synchronous spectra showed unique, chemical compositions of these resins, which are different one from another. The GC-MS data for Sumatran resins, dominated by sesquiterpenoids and triterpenoids (amyrin), confirmed their botanical origin (angiosperms as their biological affinities). The sesquiterpenoid biomarkers with cadine-structures suggested the glessite underwent more advanced polymerization processes, which does not correlate with its RS spectrum. The geological factors, the environmental conditions of resin deposition, and later various diagenesis processes may have influenced the maturation and crosslinking of compounds. Despite the genetic similarity of the resins from various part of the world, Sumatra and Germany, advanced techniques such as Gas Chromatography-Mass Spectrometry and Fluorescence Spectroscopy were the most useful to find the differences between them. These differences are predominantly a result of different diagenetic transformations of the resins.

8.
Molecules ; 25(3)2020 Jan 29.
Article in English | MEDLINE | ID: mdl-32013201

ABSTRACT

A Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) extraction method combined with Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for determination of organotin compounds (OTC) has been newly developed. The novel analytical method was validated and the quality of the results was tested by the use of certificate reference material of freshwater sediment BCR 646. The method was applied in determination of OTC concentration in real samples of bottom sediments collected from the Polish part of Odra River Estuary. The samples came from locations with different anthropogenic impact. Additionally, the extraction recovery of OTC and matrix effect on MS signal response was investigated based on those real environmental samples. It was found that organic compounds and anthropogenic contaminations present in bottom sediments may affect extraction efficiency of the organotin compounds (OTC) and change the matrix effect on MS signal response. The highest concentrations of tributyltin were found in bottom sediments collected from locations in vicinity of the Szczecin harbor and shipyards. The presence of triphenyltin above limit of detection (5 ng TPhT/g of sediment) was observed only in two samples and its concentration was several times lower compared to concentration of tributyltin (from 58 ng/g to 5263 ng/g). In spite of the fact that, the application of TBT-based paints on hull of vessel entering EU ports has been banned by European Commission regulation No. 782/2003 since 2008, the OTC compounds are still present in bottom sediment and pose significant threat to the environment. This threat should be taken into account during dredging of waterways and other hydrotechnical works.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Organotin Compounds/analysis , Rivers/chemistry , Trialkyltin Compounds/analysis , Water Pollutants, Chemical/analysis , Chromatography, Liquid , Estuaries , Gas Chromatography-Mass Spectrometry , Poland
9.
Environ Technol ; 40(25): 3265-3275, 2019 Nov.
Article in English | MEDLINE | ID: mdl-29756529

ABSTRACT

A large amount of pharmaceuticals are flushed to environment via sewage system. The compounds are persistent in environment and are very difficult to remove in drinking water treatment processes. Degradation of fluoxetine (FLU) and fluvoxamine (FLX) by ferrate(VI) were investigated. For the 10 mg/L of FLU and FLX, 35% and 50% of the compounds were degraded in the presence of 50 mg/L FeO42- within 10 minutes, respectively. After 10 minutes of the reaction, degradation of FLU and FLX is affected by formation of by-products which were likely more reactive with ferrate and competed in the reaction with FeO42-. In the case of FLU, the identified degradation by-products were hydrofluoxetine, N-methyl-3-phenyl-2-propen-1-amine, 4-(trifluoromethyl)phenol and 1-{[(1R,S)-1-Phenyl-2-propen-1-yl]oxy}-4-(trifluoromethyl)benzene. In the case of FLX, the degradation by-products were fluvoxamine acid and 5-methoxy-1-[4-(trifluoromethyl)phenyl]pent-2-en-1-imine. The results of the ecotoxicological study based on protozoa Spirostomum ambiguum have shown that 50 mg/L FeO42- reduced toxicity of 10 mg/L of FLU and FLX by around 50%. However, in the case of FLX, the results of the ecotoxicological study suggested formation of slightly more toxic compound(s) than FLX during reaction with FeO42-. Application of ferrate(VI) is a viable option for drinking water treatment process; however, caution is needed due to formation of by-products with unknown human health risk.


Subject(s)
Fluoxetine , Water Pollutants, Chemical , Fluvoxamine , Iron Compounds , Potassium Compounds
10.
Environ Sci Technol ; 48(19): 11090-9, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25211339

ABSTRACT

Oil sands process-affected water (OSPW) is a toxic and poorly biodegradable mixture of sand, silt, heavy metals, and organics. In this study, qualitative and quantitative comparisons of naphthenic acids (NAs) were done using ultraperformance liquid chromatography time-of-flight mass spectrometry (UPLC TOF-MS), Fourier transform ion cyclotron resonance (FT-ICR) MS, and ion mobility spectrometry (IMS). The unique combination of these analyses allowed for the determination and correlation of NAs, oxidized NAs, and heteroatom (sulfur or nitrogen) NAs. Despite its lower resolution, UPLC-TOF MS was shown to offer a comparable level of reliability and precision as the high resolution FT-ICR MS. Additionally, the impacts of ozonation (35 mg/L utilized ozone dose) and subsequent NAs degradation on OSPW toxicity were assessed via a collection of organisms and toxicity end points using Vibrio fischeri (nonspecific), specific fish macrophage antimicrobial responses, and fish olfactory responses. Fish macrophages exposed to ozonated OSPW for 1 week showed higher production of reactive oxygen and nitrogen intermediates; however, after 12 weeks the responses were reduced significantly. Fish olfactory tests suggested that OSPW interfered with their perception of odorants. Current results indicate that the quantification of NAs species, using novel analytical methods, can be combined with various toxicity methods to assess the efficiency of OSPW treatment processes.


Subject(s)
Biological Assay/methods , Mass Spectrometry/methods , Oil and Gas Fields , Ozone/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Aliivibrio fischeri/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Carboxylic Acids/analysis , Carboxylic Acids/toxicity , Environmental Exposure/analysis , Ions , Macrophages/drug effects , Oncorhynchus mykiss , Reference Standards , Reproducibility of Results , Smell/drug effects , Toxicity Tests , Water Pollutants, Chemical/toxicity
11.
J Environ Manage ; 139: 50-8, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24681364

ABSTRACT

The oil production generates large volumes of oil sands process-affected water (OSPW), referring to the water that has been in contact with oil sands or released from tailings deposits. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. Zero valent iron alone (ZVI) and in combination with petroleum coke (CZVI) were investigated as environmentally friendly treatment processes for the removal of naphthenic acids (NAs), acid-extractable fraction (AEF), fluorophore organic compounds, and trace metals from OSPW. While the application of 25 g/L ZVI to OSPW resulted in 58.4% removal of NAs in the presence of oxygen, the addition of 25 g petroleum coke (PC) as an electron conductor enhanced the NAs removal up to 90.9%. The increase in ZVI concentration enhanced the removals of NAs, AEF, and fluorophore compounds from OSPW. It was suggested that the electrons generated from the oxidation of ZVI were transferred to oxygen, resulting in the production of hydroxyl radicals and oxidation of NAs. When OSPW was de-oxygenated, the NAs removal decreased to 17.5% and 65.4% during treatment with ZVI and CZVI, respectively. The removal of metals in ZVI samples was similar to that obtained during CZVI treatment. Although an increase in ZVI concentration did not enhance the removal of metals, their concentrations effectively decreased at all ZVI loadings. The Microtox(®) bioassay with Vibrio fischeri showed a decrease in the toxicity of ZVI- and CZVI-treated OSPW. The results obtained in this study showed that the application of ZVI in combination with PC is a promising technology for OSPW treatment.


Subject(s)
Coke , Industrial Waste , Iron/chemistry , Petroleum , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Aliivibrio fischeri/drug effects , Aliivibrio fischeri/metabolism , Carboxylic Acids/chemistry , Carboxylic Acids/toxicity , Iron/toxicity , Metals/chemistry , Metals/toxicity , Oil and Gas Fields , Water Pollutants, Chemical/toxicity
12.
Environ Sci Technol ; 46(19): 10727-34, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22934634

ABSTRACT

The large volume of oil sands process-affected water (OSPW) produced by the oil sands industry in Northern Alberta, Canada, is an environmental concern. The toxicity of OSPW has been attributed to a complex mixture of naturally occurring acids, including naphthenic acids (NAs). Highly cyclic or branched NAs are highly biopersistent in tailings ponds, thus understanding structure-reactivity relationship for NAs is very important for OSPW reclamation. In this study, we hypothesized that large, branched and cyclic NAs may be better oxidized in the UV/H(2)O(2) process than small, linear and acyclic NAs. Relative rate measurements using binary mixtures of model NA compounds confirmed that reactivity favored compounds with more carbons, and also favored NAs with one saturated ring, relative to the corresponding linear NA. However, for model compound with three rings, no increased reactivity was observed relative to monocyclic NA. UV/H(2)O(2) treatment of OSPW confirmed our findings with model compounds, indicating that the compounds with more carbons are favored for degradation. However, increasing the number of rings (or double bond equivalents) in OSPW NAs did not show any clear structure-reactivity. Microbial degradation studies of the UV/H(2)O(2) treated OSPW should be conducted to examine the overall benefit of this treatment for the real applications.


Subject(s)
Carboxylic Acids/chemistry , Water Pollutants, Chemical/chemistry , Biodegradation, Environmental , Hydrogen Peroxide/chemistry , Molecular Structure , Oil and Gas Fields , Oxidation-Reduction , Structure-Activity Relationship , Ultraviolet Rays
13.
Environ Sci Technol ; 46(16): 8984-91, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22799739

ABSTRACT

Large volumes of oil sands process-affected water (OSPW) are produced during the extraction of bitumen from oil sands in Alberta, Canada. The degradation of a model naphthenic acid, cyclohexanoic acid (CHA), and real naphthenic acids (NAs) from OSPW were investigated in the presence of peroxydisulfate (S(2)O(8)(2-)) and zerovalent iron (ZVI). For the model compound CHA (50 mg/L), in the presence of ZVI and 500 mg/L S(2)O(8)(2-), the concentration decreased by 45% after 6 days of treatment at 20 °C, whereas at 40, 60, and 80 °C the concentration decreased by 20, 45 and 90%, respectively, after 2 h of treatment. The formation of chloro-CHA was observed during ZVI/S(2)O(8)(2-) treatment of CHA in the presence of chloride. For OSPW NAs, in the presence of ZVI alone, a 50% removal of NAs was observed after 6 days of exposure at 20 °C. The addition of 100 mg/L S(2)O(8)(2-) to the solution increased the removal of OSPW NAs from 50 to 90%. In absence of ZVI, a complete NAs removal from OSPW was observed in presence of 2000 mg/L S(2)O(8)(2-) at 80 °C. The addition of ZVI increased the efficiency of NAs oxidation by S(2)O(8)(2-) near room temperature. Thus, ZVI/S(2)O(8)(2-) process was found to be a viable option for accelerating the degradation of NAs present in OSPW.


Subject(s)
Caproates/chemistry , Carboxylic Acids/chemistry , Iron/chemistry , Petroleum , Sulfates/chemistry , Water/chemistry , Oxidation-Reduction
14.
Sci Total Environ ; 426: 387-92, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22521165

ABSTRACT

Naphthenic acids (NAs) are a broad range of alicyclic and aliphatic compounds that are persistent and contribute to the toxicity of oil sands process affected water (OSPW). In this investigation, cyclohexanoic acid (CHA) was selected as a model naphthenic acid, and its oxidation was investigated using advanced oxidation employing a low-pressure ultraviolet light in the presence of hydrogen peroxide (UV/H(2)O(2) process). The effects of two pHs and common OSPW constituents, such as chloride (Cl(-)) and carbonate (CO(3)(2-)) were investigated in ultrapure water. The optimal molar ratio of H(2)O(2) to CHA in the treatment process was also investigated. The pH had no significant effect on the degradation, nor on the formation and degradation of byproducts in ultrapure water. The presence of CO(3)(2-) or Cl(-) significantly decreased the CHA degradation rate. The presence of 700 mg/L CO(3)(2-) or 500 mg/L Cl(-), typical concentrations in OSPW, caused a 55% and 23% decrease in the pseudo-first order degradation rate constants for CHA, respectively. However, no change in byproducts or in the degradation trend of byproducts, in the presence of scavengers was observed. A real OSPW matrix also had a significant impact by decreasing the CHA degradation rate, such that by spiking CHA into the OSPW, the degradation rate decreased up to 82% relative to that in ultrapure water. The results of this study show that UV/H(2)O(2) AOP is capable of degrading CHA as a model NA in ultrapure water. However, in the real applications, the effect of radical scavengers should be taken into consideration for the achievement of best performance of the process.


Subject(s)
Carboxylic Acids/chemistry , Water Pollutants, Chemical/chemistry , Environmental Restoration and Remediation , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Petroleum Pollution/prevention & control , Photochemical Processes , Ultraviolet Rays , Water Purification/methods
15.
Sci Total Environ ; 409(23): 5119-25, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21907388

ABSTRACT

The Athabasca Oil Sands industry produces large volumes of oil sands process-affected water (OSPW) as a result of bitumen extraction and upgrading processes. Constituents of OSPW include chloride, naphthenic acids (NAs), aromatic hydrocarbons, and trace heavy metals, among other inorganic and organic compounds. To address the environmental issues associated with the recycling and/or safe return of OSPW into the environment, water treatment technologies are required. This study examined, for the first time, the impacts of pretreatment steps, including filtration and petroleum-coke adsorption, on ozonation requirements and performance. The effect of the initial OSPW pH on treatment performance, and the evolution of ozonation and its impact on OSPW toxicity and biodegradability were also examined. The degradation of more than 76% of total acid-extractable organics was achieved using a semi-batch ozonation system at a utilized ozone dose of 150 mg/L. With a utilized ozone dose of 100 mg/L, the treated OSPW became more biodegradable and showed no toxicity towards Vibrio fischeri. Changes in the NA profiles in terms of carbon number and number of rings were observed after ozonation. The filtration of the OSPW did not improve the ozonation performance. Petroleum-coke adsorption was found to be effective in reducing total acid-extractable organics by a 91%, NA content by an 84%, and OSPW toxicity from 4.3 to 1.1 toxicity units. The results of this study indicate that the combination of petroleum-coke adsorption and ozonation is a promising treatment approach to treat OSPW.


Subject(s)
Carboxylic Acids/chemistry , Extraction and Processing Industry , Hydrocarbons , Oxidants, Photochemical/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Alberta , Coke , Filtration , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Ozone , Petroleum , Vibrio/drug effects
16.
Environ Sci Technol ; 45(19): 8452-9, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21870799

ABSTRACT

Coagulation/flocculation (CF) by use of alum and cationic polymer polyDADMAC, was performed as a pretreatment for remediation of oil sands process-affected water (OSPW). Various factors were investigated and the process was optimized to improve efficiency of removal of organic carbon and turbidity. Destabilization of the particles occurred through charge neutralization by adsorption of hydroxide precipitates. Scanning electron microscope images revealed that the resultant flocs were compact. The CF process significantly reduced concentrations of naphthenic acids (NAs) and oxidized NAs by 37 and 86%, respectively, demonstrating the applicability of CF pretreatment to remove a persistent and toxic organic fraction from OSPW. Concentrations of vanadium and barium were decreased by 67-78% and 42-63%, respectively. Analysis of surface functional groups on flocs also confirmed the removal of the NAs compounds. Flocculation with cationic polymer compared to alum, caused toxicity toward the benthic invertebrate, Chironoums dilutus, thus application of the polymer should be limited.


Subject(s)
Metals/chemistry , Oils/chemistry , Organic Chemicals/isolation & purification , Silicon Dioxide/chemistry , Water Pollutants, Chemical/isolation & purification , Water Pollution/analysis , Water/chemistry , Alum Compounds/chemistry , Animals , Carboxylic Acids/isolation & purification , Cations , Chironomidae/drug effects , Flocculation/drug effects , Microscopy, Electron, Scanning , Nephelometry and Turbidimetry , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared , Static Electricity , Trace Elements/isolation & purification , Water Pollutants, Chemical/toxicity
17.
Environ Sci Technol ; 45(17): 7431-7, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21761906

ABSTRACT

Large volumes of oil sands process-affected water (OSPW) are produced in northern Alberta by the surface mining oil sands industry. Naphthenic acids (NAs) are a complex mixture of persistent organic acids that are believed to contribute to the toxicity of OSPW. In situ microbial biodegradation strategies are slow and not effective at eliminating chronic aquatic toxicity, thus there is a need to examine alternative remediation techniques. NAs with multiple rings and alkyl branching are most recalcitrant to microbial biodegradation, but here we hypothesized that these same structural features may lead to preferential degradation in the ozonation process. Total NA degradation increased with increasing pH for commercial NA solutions, suggesting a hydroxyl radical mechanism and that naturally alkaline OSPW would unlikely require pH adjustment prior to treatment. For commercial NAs and OSPW, NAs with more rings and more carbon (and more H atoms) were depleted most rapidly in the process. Relative rate measurements with binary mixtures of model NA compounds not only confirmed this structure reactivity but also indicated that alkyl branching patterns were an additional factor determining NA reactivity. The results demonstrate that ozonation is complementary to microbial biodegradation, and the process remains a promising water reclamation strategy for the oil sands industry.


Subject(s)
Carboxylic Acids/chemistry , Ozone/chemistry , Structure-Activity Relationship , Alberta , Biodegradation, Environmental , Mining , Molecular Structure , Oils/chemistry , Silicon Dioxide/chemistry , Water Pollutants, Chemical/chemistry
18.
J Phys Chem A ; 114(45): 12067-74, 2010 Nov 18.
Article in English | MEDLINE | ID: mdl-20973516

ABSTRACT

The mechanism of hydroxyl radical initiated degradation of a typical oil sands process water (OSPW) alicyclic carboxylic acid was studied using cyclohexanoic acid (CHA) as a model compound. By use of vacuum ultraviolet irradiation (VUV, 172 nm) and ultraviolet irradiation in the presence of hydrogen peroxide UV(254 nm)/H(2)O(2), it was established that CHA undergoes degradation through a peroxyl radical. In both processes the decay of the peroxyl radical leads predominantly to the formation of 4-oxo-CHA, and minor amounts of hydroxy-CHA (detected only in UV/H(2)O(2)). In UV/H(2)O(2), additional 4-oxo-CHA may also have been formed by direct reaction of the oxyl radical with H(2)O(2). The oxyl radical can be formed during decay of the peroxyl-CHA radical or reaction of hydroxy-CHA with hydroxyl radical. Oxo- and hydroxy-CHA further degraded to various dihydroxy-CHAs. Scission of the cyclohexane ring was also observed, on the basis of the observation of acyclic byproducts including heptadioic acid and various short-chain carboxylic acids. Overall, the hydroxyl radical induced degradation of CHA proceeded through several steps, involving more than one hydroxyl radical reaction, thus efficiency of the UV/H(2)O(2) reaction will depend on the rate of generation of hydroxyl radical throughout the process. In real applications to OSPW, concentrations of H(2)O(2) will need to be carefully optimized and the environmental fate and effects of the various degradation products of naphthenic acids considered.


Subject(s)
Carboxylic Acids/chemistry , Cyclohexanecarboxylic Acids/chemistry , Hydrogen Peroxide/chemistry , Photochemical Processes , Ultraviolet Rays , Hydroxyl Radical/chemistry
19.
Ecotoxicol Environ Saf ; 65(2): 265-77, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16169078

ABSTRACT

Reversed-phase HPLC determination of the herbicide MCPA and its products of radiolytic degradation has been optimized. The radiolytic degradation was carried out using gamma-irradiation and was optimized in terms of irradiation dose and pH of irradiated MCPA solution. Decomposition of 100 ppm MCPA in pure solutions required irradiation with a 3 kGy dose. The main products of irradiation in the dose range up to 10-kGy were various phenolic compounds and carboxylic acids. The developed method was applied for treatment of industrial waste from production of MCPA. The 10-kGy dose was needed for decomposition of 500 ppm of MCPA in the industrial waste samples; however, the presence of stoichiometric amount of hydrogen peroxide in the irradiated waste allowed a 50% reduction of the gamma-irradiation dose. Despite complete decomposition of MCPA in the industrial waste, in order to reduce the toxicity of irradiated waste, measured by the Microtox bioluminescence test, higher than a 10 kGy irradiation dose was needed.


Subject(s)
2-Methyl-4-chlorophenoxyacetic Acid/radiation effects , Gamma Rays , Herbicides/radiation effects , Industrial Waste/analysis , Waste Disposal, Fluid/methods , 2-Methyl-4-chlorophenoxyacetic Acid/analysis , Chromatography, High Pressure Liquid , Herbicides/analysis , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Radiation Dosage , Solutions
20.
Chemosphere ; 57(2): 135-45, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15294437

ABSTRACT

The optimization of experimental conditions for radiolytic removal of organic pollutants from water and waste with the use of ionizing radiation via controlling the concentration of target compound(s) requires also monitoring the toxicity changes during the process. Commonly used herbicides 2,4-D and dicamba were shown to increase toxicity measured with the Microtox test at low irradiation doses resulting from formation of more toxic transient products, which can be decomposed at larger doses. The changes of toxicity were examined with respect to dose magnitude and the presence of commonly occurring scavengers of radiation.


Subject(s)
Environmental Monitoring , Herbicides/radiation effects , 2,4-Dichlorophenoxyacetic Acid/chemistry , 2,4-Dichlorophenoxyacetic Acid/radiation effects , Ammonia/metabolism , Animals , Bacteria , Chromatography, High Pressure Liquid , Dicamba/chemistry , Dicamba/radiation effects , Dose-Response Relationship, Radiation , Herbicides/chemistry , Herbicides/toxicity , Luminescent Measurements , Ozone/chemistry , Radiation, Ionizing , Toxicity Tests , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...