Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Interdiscip Toxicol ; 6(1): 3-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-24170972

ABSTRACT

Sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) is the pump crucial for calcium homeostasis and its impairment results in pathologies such as myopathy, heart failure or diabetes. Modulation of SERCA activity may represent an approach to the therapy of diseases with SERCA impairment involvment. Quercetin is flavonoid known to modulate SERCA activity. We examined the effect of nine novel quercetin derivatives on the activity of the pump. We found that 5-morpholinohydroxypoxyquercetin, di(prenylferuoyl)quercetin, di(diacetylcaffeoyl)-mono-(monoacetylcaffeoyl)quercetin and monoacetylferuloylquercetin stimulated the activity of SERCA. On the contrary, monochloropivaloylquercetin, tri(chloropivaloyl)quercetin, pentaacetylquercetin, tri(trimethylgalloyl)quercetin and diquercetin inhibited the activity of the pump. To identify compounds with a potential to protect SERCA against free radicals, we assessed the free radical scavenging activity of quercetin derivatives. We also related lipophilicity, an index of the ability to incorporate into the membrane of sarcoplasmic reticulum, to the modulatury effect of quercetin derivatives on SERCA activity. In addition to its ability to stimulate SERCA, di(prenylferuloyl)quercetin showed excellent radical scavenging activity.

2.
Neuro Endocrinol Lett ; 33 Suppl 3: 190-7, 2012.
Article in English | MEDLINE | ID: mdl-23353866

ABSTRACT

OBJECTIVES: We examined effect of novel quercetin derivatives on sarcoplasmic reticulum (SR) Ca-ATPase activity isolated from skeletal muscles and their potential to prevent injury of SERCA induced by peroxynitrite that is elevated in multiple pathological processes. METHODS: SR was isolated by ultracentrifugation, ATPase activity of SERCA was measured by NADH-coupled enzyme assay. Sulfhydryl and carbonyl groups content was determined to test oxidation of SERCA. Conformational changes in ATP and calcium binding site were assessed using specific fluorescent labels. RESULTS: Di(diacetylcafeoyl)-mono-(monoacetylcafeoyl) quercetin (DACQ) restored and diquercetin significantly decreased activity of SERCA in the presence of peroxynitrite. Diquercetin significantly decreased SERCA activity in absence of peroxynitrite. All tested quercetin derivatives decreased thiol group content of SR and caused change in SERCA conformation. Significant decrease of protein carbonyls was observed in SERCA treated with di(diacetylcafeoyl)-mono-(monoacetylcafeoyl) quercetin in the presence of peroxynitrite. CONCLUSION: DACQ protected SERCA in SR against formation of carbonyls in vitro and protected activity of the pump against inhibition caused by peroxynitrite. However, none tested quercetin derivative did protect SERCA against conformational changes and sulfhydryl group oxidation. Diquercetin inhibited SERCA at relatively low concentrations in the presence of peroxynitrite. Diquercetin and DACQ may prove to be beneficial in treatment of cancer and inflammatory diseases, respectively.


Subject(s)
Antioxidants/pharmacology , Endoplasmic Reticulum/drug effects , Quercetin/pharmacology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum/drug effects , Animals , Antioxidants/metabolism , Drug Interactions , Endoplasmic Reticulum/enzymology , Enzyme Activation/drug effects , Enzyme Activation/physiology , Female , Muscle, Skeletal/drug effects , Muscle, Skeletal/enzymology , Peroxynitrous Acid/biosynthesis , Peroxynitrous Acid/metabolism , Peroxynitrous Acid/pharmacology , Quercetin/analogs & derivatives , Quercetin/metabolism , Rabbits , Sarcoplasmic Reticulum/enzymology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...