Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 823: 153598, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35114236

ABSTRACT

The current regulations of heavy-duty vehicles in China do not include the emissions in the cold start stage into the overall emission evaluation. However, the speed of heavy-duty diesel vehicles in the cold start stage is often low and the proportion of idle-conditions is large, resulting in the difference between the actual test results and evaluation results of emissions. Therefore, in order to accurately evaluate the impact of emission during cold start on the overall emission, in this study, the OBS-ONE portable vehicle emission test equipment was used to test the emission of three representative heavy-duty diesel vehicles with different types under actual road driving conditions, and the cumulative averaging (CA) method was adopted to calculate and analyze the test emission data. Firstly, the cold start emission of different types of heavy-duty vehicles was evaluated. The results show that the contribution rate of pollutant emission in the cold start stage is high, in which NOx emission accounts for 40-90% of the whole trip. It was unreasonable for regulations to exclude data in the cold start stage. The cold start duration of vehicle A is nearly 300 s longer than that of vehicle C, however, the NOx and PN emission factors of vehicle A are nearly 10 times and 100 times smaller than that of vehicle C at the cold start stage respectively. The cold start duration, fuel consumption and the emission factors in cold start stage of different types of heavy-duty diesel vehicles do not have a unified law. Secondly, the emission characteristics and differences of different types of heavy-duty vehicles are studied at the instantaneous level, and the internal mechanism causing the emission differences is explored and revealed. In the cold stage, CO2 emission shows a good correlation with the fuel consumption. CO, NOx emissions show a good correlation with the fuel consumption when the engine and post-treatment temperature are low, and CO and NOx emissions decrease with the increase of engine and post-treatment temperature. PN emissions are mainly related to the engine working state. Finally, the influence of dynamic parameters v·a and RPA on pollutant emission was analyzed. The results show that driving force is an important factor affecting CO2 emission, and RPA has no obvious correlation with emission at cold start stage.


Subject(s)
Air Pollutants , Environmental Pollutants , Air Pollutants/analysis , China , Gasoline/analysis , Motor Vehicles , Vehicle Emissions/analysis
2.
Sci Total Environ ; 809: 151133, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34695474

ABSTRACT

Route topography is an important boundary condition for the regulated real driving emission (RDE) test. However, accurately and comprehensively evaluating the influence of route topography on the RDE test is difficult, because the effect cannot be easily separated from those of other test boundaries. We selected two light-duty gasoline vehicles to complete two rounds of RDE tests on four different test routes, and conducted the correlation analysis between pollutant emissions and route topography quantified by the cumulative positive altitude gains of the test routes based on the moving averaging window method. Since the small number of sample data at the total trip and road section level were not sufficiently representative of the population, we proposed to use the pollutant emission data of the data windows to analyze the complex coupling effect of the cumulative positive altitude gains and trip dynamic parameters of v·apos[95] on the RDE tests. At data window level, thousands of data windows were treated as the road section subsets of the RDE test, and the sample space of road section emission data was expanded by several orders of magnitude. With the help of the large data sample space, the influence mechanism of the random test boundaries on the RDE tests was demonstrated.


Subject(s)
Air Pollutants , Automobile Driving , Air Pollutants/analysis , Gasoline/analysis , Motor Vehicles , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...