Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-35886300

ABSTRACT

The magnetic biochar material CoFe2O4/PCPS (peanut shell powder) was prepared based on the hybrid calcination method. The properties of prepared composites and the extraction effect of magnetic solid phase extraction on phenoxy carboxylic acid herbicides were assessed. The morphology, crystal structure, specific surface area, and pore size distribution of the material were analysed using a transmission electron microscope (TEM), infrared Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and N2 absorption surface analysis (BET). The results of the magnetic solid phase extraction of a variety of phenoxy carboxylic acid herbicides in water using CoFe2O4/PCPS composites showed that, when the mass ratio of CoFe2O4 and PCPS was 1:1, 40 mg of the composite was used, and the adsorption time was 10 min at pH 8.50. Methanol was used as the eluent, and the recovery rates of the three phenoxy carboxylic acid herbicides were maintained at 81.95-99.07%. Furthermore, the actual water sample analysis results showed that the established method had good accuracy, stability, and reliability.


Subject(s)
Herbicides , Adsorption , Arachis , Carboxylic Acids/analysis , Herbicides/chemistry , Magnetic Phenomena , Powders , Reproducibility of Results , Solid Phase Extraction/methods , Water/chemistry
2.
Environ Int ; 147: 106336, 2021 02.
Article in English | MEDLINE | ID: mdl-33360410

ABSTRACT

The pathways of human mercury (Hg) exposure are complex and accurate understanding of relative contributions from different pathways are crucial for risk assessment and risk control. In this study, we determined total Hg concentration and Hg isotopic composition of human urine, dietary components, and inhaled air in the Wanshan Hg mining area (MA), Guiyang urban area (UA), and Changshun background area (BA) to understand Hg exposure sources and metabolic processes in human body. At the three studied sites, total gaseous mercury (TGM) showed negative δ202Hg (-3.11‰ to + 1.12‰) and near-zero Δ199Hg (-0.16‰ to + 0.13‰), which were isotopically distinguishable from Hg isotope values of urine (δ202Hg: -4.02‰ to - 0.84‰; Δ199Hg: -0.14‰ to 0.64‰). We observed an offset of -1.01‰ to -1.6‰ in δ202Hg between TGM and urine samples, and an offset of -1.01‰ to 0.80‰ in δ202Hg between rice and urine samples, suggesting that lighter isotopes are more easily accumulated in the kidneys and excreted by urine. We proposed that the high positive Δ199Hg in urine samples of UA was derived from fish consumption. The results of a binary mixing model based on Δ199Hg were compared with those from a classic dietary model. The results from the MIF binary model showed that fish consumption accounted for 22% of urine Hg in the families at UA, whereas fish consumption contributed limited Hg to MA and BA. This study highlighted that Hg isotopes can be a useful tracer in understanding the sources and fates of Hg in human bodies.


Subject(s)
Human Body , Mercury , Animals , China , Environmental Monitoring , Humans , Isotopes , Mercury/analysis , Mercury Isotopes/analysis
3.
Environ Res ; 196: 110362, 2021 05.
Article in English | MEDLINE | ID: mdl-33169691

ABSTRACT

Recent studies have shown that rice consumption can be the major pathway for human methylmercury (MeHg) exposure in inland China. However, few studies have considered the susceptible population of school children's exposure through rice ingestion. In this study, monthly variations in total Hg (THg)/MeHg concentrations in rice, fish, hair, and urine samples were studied to evaluate the Hg (both THg and MeHg) exposure in Guiyang, a typical industrial area with high anthropogenic emission of Hg. A total of 17 primary school (school A) students, 29 middle school (school B) students, and 46 guardians participated in this study for one year. Hair THg, hair MeHg, and urine THg concentrations ranged from 355-413 ng g-1, 213-236 ng g-1, and 469-518 ng g-1 Creatinine (ng·g-1 Cr), respectively, and no significant differences were observed between different genders and age groups. Hair and urine Hg concentrations showed slightly higher values in the cold season (October to February) than the hot season (March to September), but without significant difference. High monthly variability of individual hair and urine Hg concentrations suggested that long-term study could effectively decrease the uncertainty. The school students showed significantly higher urine THg concentrations than adults due to children's unique physiological structure and behaviors. Probable daily intake (PDI) of MeHg via rice and fish ingestion averaged at 0.0091, 0.0090, and 0.0079 µg kg-1 d-1 for school A students, school B students, and their guardians, respectively, which means that 86%, 84%, and 87% of the PDI were originated from rice ingestion, respectively. Therefore, more attention should be paid to children as a susceptible population. The results indicated low risk of Hg exposure via rice and fish consumption for urban residents in a Chinese industrial city.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Adult , Animals , Child , China , Cities , Environmental Monitoring , Female , Humans , Male , Mercury/analysis , Schools
4.
J Hazard Mater ; 402: 123546, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32745875

ABSTRACT

Minimization of Cd accumulation in wheat is an effective strategy to prevent Cd hazard to human. This study compared and highlighted the roles of soil and foliar applications of Se and Si effects on Cd accumulation and toxicity in soft and durum wheat. Soil Se (0.5-1.0 mg kg-1) and Si (3-6 mg kg-1) applications provided an effective strategy to reduce wheat grain Cd concentrations of both wheat varieties by 59-61 % and 16-30 %, but foliar Se (0.125-0.25 mM) and Si (2.5-5 mM) application reduced grain Cd of soft wheat by 20-36 %. Both soil and foliar Se and Si applications significantly alleviated Cd toxicity by regulation of Cd transport genes, as reflected by increased the grain yield and antioxidant enzymes activities, and reduced MDA in wheat tissues. Selenium applications were more effective than Si on the reduction of Cd-induced toxicity and concentrations in soft wheat, but not in durum wheat due to more tolerant to Cd. Downregulation of influx transporter (TaNramp5) and upregulation of efflux transporter (TaTM20 and TaHMA3) in soft wheat may contribute to the Si/Se-dependent Cd mitigation and enhance the tolerance to toxic Cd. Overall, Se/Si applications, especially soil Se, can be efficiently used for reducing grain Cd uptake from Cd-contaminated soils.


Subject(s)
Selenium , Soil Pollutants , Antioxidants , Cadmium/analysis , Cadmium/toxicity , Humans , Silicon , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Triticum
5.
Environ Sci Technol ; 54(22): 14334-14342, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33112617

ABSTRACT

Bioaccumulation of methylmercury (MeHg) in rice grains has been an emerging issue of human health, but the mechanism of bioaccumulation is still poorly understood. Mercury (Hg) isotope measurements are powerful tools for tracing the sources and biogeochemical cycles of Hg in the environment. In this study, MeHg compound-specific stable isotope analysis (CSIA) was developed in paddy soil and rice plants to trace the biogeochemical cycle of Hg in a paddy ecosystem during the whole rice-growing season. Isotopic fractionation was analyzed separately for MeHg and inorganic Hg (IHg). Results showed distinct isotopic signals between MeHg and IHg in rice plants, indicating different sources. δ202Hg values of MeHg showed no significant differences between roots, stalks, leaves, and grains at each growth stage. The similar Δ199Hg values of MeHg between rice tissues (0.14 ± 0.08‰, 2SD, n = 12), soil (0.13 ± 0.03‰, 2SD, n = 4), and irrigation water (0.17 ± 0.09‰, 2SD, n = 5) suggested that the soil-water system was the original source of MeHg in rice plants. Δ199Hg values of IHg in the paddy ecosystem indicated that water, soil, and atmosphere contributed to IHg in grains, leaves, stalks, and roots with varying degree. This study demonstrates that successful application of MeHg CSIA can improve our understanding of the sources and bioaccumulation mechanisms of MeHg and IHg in the paddy ecosystems.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Soil Pollutants , Ecosystem , Environmental Monitoring , Humans , Mercury/analysis , Soil , Soil Pollutants/analysis
6.
Environ Pollut ; 265(Pt A): 115045, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32593926

ABSTRACT

Cadmium (Cd) contamination is a big challenge for managing food supply and safety around the world. Reduction of the bioaccumulation of cadmium (Cd) in wheat is an important way to minimize Cd hazards to human health. This study compared and highlighted the effects of soil and foliar applications of Zn on Cd accumulation and toxicity in cultivars with high Cd accumulation (high-Cd wheat) and low Cd accumulation (low-Cd wheat). Both foliar and soil Zn applications provided effective strategies for reducing wheat grain Cd concentrations in the high-Cd wheat by 26-49% and 25-52%, respectively, and these also significantly reduced the concentrations in wheat stems and leaves. Foliar and soil Zn applications significantly reduced Cd in leaves and stems of the low-Cd wheat but had no effects on grain Cd. Both soil and foliar Zn applications significantly alleviated Cd toxicity by regulation of Cd transport genes, as reflected by the increased grain yield and antioxidant enzyme activity in the wheat tissues. Gene expression in response to zinc application differed in the two wheat cultivars. Down-regulation of the influx transporter (TaNramp5) and upregulation of the efflux transporters (TaTM20 and TaHMA3) in the high-Cd wheat may have contributed to the Zn-dependent Cd alleviation and enhanced its tolerance to Cd toxicity. Additionally, foliar Zn applications down-regulated the leaf TaHMA2 expression that reduced root Cd translocation to shoots, while soil Zn applications down-regulated the root TaLCT1 expression, which contributed to the reduction of root Cd concentrations. Soil (99 kg ZnSO4·7H2O ha-1) and foliar (0.36 kg ZnSO4·7H2O ha-1) Zn applications can effectively decrease the Cd in grains and guarantee food safety and yield, simultaneously. The presented results provide a new insight into the mechanisms of, and strategies for, using Zn for the Cd reduction in wheat.


Subject(s)
Cadmium/analysis , Soil Pollutants/analysis , Antioxidants , Humans , Soil , Triticum , Zinc/analysis
7.
Sci Total Environ ; 736: 139687, 2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32485364

ABSTRACT

Consumption of mercury (Hg) contaminated rice can be a major environmental health issue but the toxicokinetics is not well known. Hg isotopes have been shown to be good tracers in studying Hg exposure and metabolic processes. We established a Hg mass balance and Hg isotope model in rats fed with Hg contaminated rice (THg 51.3 ng/g; MeHg 25 ng/g) for 90 days to investigate Hg toxicokinetics. Overall 80% of feeding THg was recovered in rat body and excrement, while the excrement accounted for 55% of total observed THg in rats. Feces were the main route of Hg elimination in rats, while urinary excretion was negligible. However, only 32% of utilized MeHg was recovered in rats, indicating significant demethylation of MeHg in rat body. Positive net fractionations of δ202Hg (relative to the feeding rice) were observed in hair and blood samples (1.21‰ and 1.25‰, respectively), which have similar trend with the results obtained in human hair study, exhibiting higher δ202Hg values (2‰- 3‰) than consumed fish and rice. Most importantly, we observed negative net fractionations in feces (-0.44‰), which confirmed the missed Hg with negative δ202Hg signal. We concluded that mass balance and Hg isotope are useful tools for quantifying toxicokinetics of Hg. Demethylation of MeHg in the intestine were the important detoxification process in rat body characterizing with negative net Hg fractionations in feces.


Subject(s)
Mercury/analysis , Methylmercury Compounds , Oryza , Animals , Environmental Monitoring , Humans , Kinetics , Mercury Isotopes , Rats
8.
Sci Total Environ ; 725: 138358, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32464746

ABSTRACT

Minimization of cadmium (Cd) accumulation in wheat is an effective method to prevent Cd-related health risks to humans. To understand the underlying mechanisms of restricting Cd transport, the role of nodes in Cd restriction was studied in eight Chinese wheat cultivars. The Cd accumulation differed significantly among the cultivars. The grain Cd concentrations were mainly dependent on the Cd concentrations in the roots and shoots. The Cd transport in the shoots controlled the wheat grain Cd accumulations. Nodes in the wheat stem have distinct functions in the transfer, distribution, and restriction of Cd. The node connected to the panicle showed the lowest translocation factors. The area of the vascular bundles, especially the diffuse vascular bundles, in the junctional node with the flag leaf was the key factor in restricting Cd transfer to the wheat grain. There was a significant relation between these areas and the grain Cd concentrations. The conclusion of this study is that screening or breeding cultivars with low Cd concentrations in the roots or with smaller areas of diffuse vascular bundles in the junctional nodes with the flag leaf is an effective strategy to decrease Cd concentration in wheat grains.


Subject(s)
Cadmium/analysis , Soil Pollutants/analysis , Edible Grain/chemistry , Humans , Plant Leaves/chemistry , Plant Roots/chemistry , Triticum
9.
Sci Total Environ ; 720: 137585, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32135280

ABSTRACT

Cadmium (Cd) contamination from mining and smelting operations has led to growing environmental health concerns. In this study, soil, surface water, drinking water, rice, vegetables, and biomarkers (hair and urine) were collected from local residents near an active lead-zinc mine and a copper smelter. The aim was to determine how nonferrous metal mining and smelting activities have affected the health of local residents. It was found that the Cd concentrations in most soil and rice samples exceeded the national tolerance limits of China. Dietary intakes of rice and vegetables were the two major pathways of Cd exposure to local residents, accounting for >97% of the total probable daily intake. The excessive daily intake of Cd resulted in potential non-carcinogenic risks to the local residents, especially to children living around the two areas. The mean hair and urine Cd concentrations were 0.098 ± 0.10 mg kg-1 and 5.7 ± 3.1 µg L-1 in the mining area, and 0.30 ± 0.21 mg kg-1 and 5.5 ± 3.5 µg L-1 in the smelting area, respectively. A significantly positive correlation between hair Cd concentrations and the hazard quotient (HQ) for rice ingestion indicated that rice contamination had the most critical adverse effect on local residents. Due to the high levels of environmental Cd contamination, residents of the smelting area had a much higher Cd exposure than residents of the mining area. The results suggested that nonferrous mining and smelting should not coexist with agricultural activities. Effective contamination mitigation strategies and environmental remediation should be formulated and implemented to improve the health of local residents.


Subject(s)
Mining , Cadmium , China , Copper , Environmental Monitoring , Food Contamination , Humans , Lead , Risk Assessment , Soil Pollutants , Zinc
10.
J Hazard Mater ; 384: 121285, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31577969

ABSTRACT

Despite the global importance of atmospheric heavy metal input into agricultural soils, research has primarily focused on the amount of the depositions with limited attention given to the risk of the newly deposited heavy metals. To understand the remobilization of the newly deposited copper (Cu) and lead (Pb) from the atmosphere and explore the metals' mobility and bioavailability to rice (Oryza sativa L.), a soil transplant experiment was conducted in three areas along a gradient of atmospheric depositions. Approximately 61% of the Cu and 76% of the Pb depositions tended to be present in potentially mobile fractions. The soil retention of newly deposited Cu and Pb presented as higher mobile fractions than these in the original soil. The newly deposited Cu and Pb in soils only accounted for 0.34-8.7% and 0.07-0.29% of the total soil Cu and Pb pools, but they contributed 30-84% and 6-41% in rice tissues, respectively. A major implication of these findings is that once the heavy metal is deposited, it may be reactivated in soils and transported to aerial parts or foliar uptake into plant tissues, emphasizing the important role of the newly deposited Cu and Pb in contributing to the edible parts of crops.


Subject(s)
Air Pollutants/pharmacokinetics , Copper/pharmacokinetics , Lead/pharmacokinetics , Oryza/metabolism , Soil Pollutants/pharmacokinetics , Air Pollutants/analysis , Air Pollutants/chemistry , Biological Availability , Copper/analysis , Copper/chemistry , Lead/analysis , Lead/chemistry , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry
11.
Ecotoxicol Environ Saf ; 171: 329-336, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-30616149

ABSTRACT

Non-ferrous smelting releases lots of heavy metals to the environment. Although numerous studies have focused on pollution in the environment, fewer have studied the adverse health effects. In the current study, samples of food, hair and urine were collected and analyzed for zinc (Zn), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and copper (Cu) from residents of 3 villages near the largest copper smelter in China. The estimated daily intake (EDI), target hazard quotient (THQ), and Hazard Index (HI) were used to estimate and analyze the health risks to local residents (children, adults, and seniors). The Zn, Cr, Ni, Fe, Pb and Cu concentrations in food ranged from 16.02 to 61.48 mg kg-1, 0.23-13.64 mg kg-1, 0.10-5.90 mg kg-1, 19.16-170.05 mg kg-1, 0.15-3.62 mg kg-1, and 0.53-2.74 mg kg-1, respectively. Zn, Cr, Ni and Pb concentrations in all vegetables were above the national tolerance limits. Children had higher EDIs of heavy metals than that of adults and seniors. The THQ of single elements and the HI of combined elements indicated that the EDI of Pb and Cu showed the highest potential health risks, followed by the EDI of Zn and Fe, and Ni, Cr. High EDI of heavy metals resulted in much higher concentrations of heavy metals in hair and urine samples than those of normal Chinese residents, showing that residents around the smelter have potential health risks through daily food intake. The main sources of these heavy metals were from the consumption of rice and vegetables and it is imperative that measures should be taken to control this urgent problem.


Subject(s)
Environmental Exposure/adverse effects , Metallurgy , Metals, Heavy/analysis , Metals, Heavy/toxicity , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , China , Chromium/analysis , Copper/analysis , Food Contamination/analysis , Hair/chemistry , Humans , Iron/analysis , Middle Aged , Nickel/analysis , Oryza/chemistry , Risk Assessment , Soil Pollutants/analysis , Urine/chemistry , Vegetables/chemistry , Young Adult , Zinc/analysis
12.
Sci Total Environ ; 647: 932-941, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30096681

ABSTRACT

There is growing interest in how heavy metals in remote ecosystems are elevated and affect environmental health. However, no studies have investigated atmospheric lead (Pb) deposition influences on the Pb bioaccumulation in insects in forests. Here we measure Pb concentrations and pools in forest vegetation, litterfall, organic soil, mineral soil, as well as litterfall deposition fluxes in a region severely affected by atmospheric deposition. We also analyzed Pb in insects which feed in the polluted forest vegetation and litter. Assessment of high Pb loads causing potential ecological risk to insects was also studied. Total Pb pool in the vegetation was 0.12 g m-2 and annual litterfall deposition flux of Pb was 13.42 mg m-2, which was much higher than those in the background areas. Pools of Pb from litter to mineral topsoil averaged 4.3 g m-2, which accounted for 97.3% of total pools (biomass + soil) in the forest ecosystem. Pools of Pb in surface soils were correlated significantly with the pools of total organic matter and elevation. Atmospheric deposition was inferred the major source of Pb in the forest ecosystem, which can be supported by the highest Pb concentrations in the moss and overstory foliage. The maximum Pb concentration was showed in the dung beetle (12.1 mg kg-1) residing in the soils compared that in the longicorn and of cicada, which would potentially pose negatively influence to predators along food chains.


Subject(s)
Environmental Monitoring , Forests , Lead/analysis , Soil Pollutants/analysis , Animals , Ecosystem , Insecta , Soil , Trees
13.
Environ Pollut ; 244: 218-227, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30340168

ABSTRACT

There is an increasing evidence linking protective effect of selenium (Se) against Pb toxicology; however, Pb exposure risk assessments usually consider only the environmental Pb contamination and dietary intake. Based on the current understanding of mechanisms of SePb interactions, the physiological function/toxicology of Se and the toxicology of Pb, a new criterion for Se and Pb exposure assessment is developed. Additionally, seven existing criteria were also used to assess the resident health risks around a smelter in China. The Pb concentrations in locally-produced foods exceeded the national tolerance limits of China and the Se in the foods were similar to those in areas with adequate Se levels. In accordance with the illustrated assessments of the new criterion and seven existing criteria, we found a large knowledge gap between the new and traditional assessments of exposure to Pb and/or Se. The new assessment criteria suggested that almost all the residents were facing the Se deficiency and 58% of the residents not only had the adverse health of Se deficiency, but also had the health risks of Pb toxicity. The Pb and Se in the hair and urine may partly support the new criterion. This study suggested that the process of Se counteracting the Pb toxicity may result in Se deficiency. Pb exposure combined Se intake should be considered in future assessments of Pb exposure (or Se intake).


Subject(s)
Environmental Exposure/standards , Lead/toxicity , Risk Assessment/standards , Selenium/deficiency , Selenium/therapeutic use , China , Humans
14.
Environ Sci Technol ; 52(9): 5407-5416, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29649864

ABSTRACT

Mercury (Hg) isotopic compositions in hair and dietary sources from Wanshan (WS) Hg mining area, Guiyang (GY) urban area, and Changshun (CS) rural area were determined to identify the major Hg exposure sources of local residents. Rice and vegetables displayed low δ202Hg and small negative to zero Δ199Hg, and are isotopically distinguishable from fish which showed relatively higher δ202Hg and positive Δ199Hg. Distinct isotopic signatures were also observed for human hair from the three areas. Shifts of 2 to 3‰ in δ202Hg between hair and dietary sources confirmed mass dependent fractionation of Hg isotopes occurs during metabolic processes. Near zero Δ199Hg of hair from WS and CS suggested rice is the major exposure source. Positive Δ199Hg of hair from GY was likely caused by consumption of fish. A binary mixing model based on Δ199Hg showed that rice and fish consumption accounted for 59% and 41% of dietary Hg source for GY residents, respectively, whereas rice is the major source for WS and CS residents. The model output was validated by calculation of probable daily intake of Hg. Our study suggests that Hg isotopes can be a useful tracer for quantifying exposure sources and understanding metabolic processes of Hg in humans.


Subject(s)
Environmental Monitoring , Mercury , Animals , China , Humans , Mercury Isotopes , Mining
15.
Sci Total Environ ; 633: 93-99, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29573695

ABSTRACT

Recent evidence indicated that methylmercury (MeHg) contaminated rice can be a significant source of MeHg human exposure, but the health implications are not known. The objective of this study was to study the kinetics, speciation, and effects of MeHg contaminated rice using a rat model. Five groups of adult Sprague-Dawley rats (n=10 in each group) were fed control rice, low (10ng/g MeHg) and high (25ng/g MeHg) MeHg contaminated rice. Two groups of the positive control were fed control rice spiked with the same levels of MeHgCl. Short-term exposure to low level of spiked MeHgCl stimulated the growth of male rats while long-term exposure to spiked MeHgCl inhibited the growth in female rats. There was no temporal variation of total mercury (THg) concentrations in the rat fecal samples from each group, and the THg concentrations significantly correlated with the inorganic Hg concentrations in the feeding rice. There were significant differences in the accumulation of THg and MeHg among different groups and different organs. THg and MeHg concentrations in the kidney were the highest among the organs examined. The blood and brain had high percentages of THg as MeHg, which indicates that MeHg can easily pass through the blood-brain barrier and has a high affinity for brain tissue. Exposure to rice containing 25ng/g MeHg decreased antioxidant function and damaged the nervous system in rats, but no significant effects were found in the group fed with rice containing 10ng/g MeHg. MeHgCys in rice is less toxic than spiked MeHgCl to rats. The toxicity of MeHg both decided by its concentration and speciation.


Subject(s)
Mercury/metabolism , Soil Pollutants/metabolism , Animals , Dietary Exposure , Female , Male , Mercury/toxicity , Oryza/chemistry , Rats , Rats, Sprague-Dawley , Soil Pollutants/toxicity
16.
Environ Geochem Health ; 40(2): 903-913, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29018984

ABSTRACT

The causes of Kashin-Beck disease (KBD) in children are multifactorial, and particular consideration has been given to childhood selenium (Se) deficiency. In this study, dietary intake of Se and mercury (Hg) was determined at KBD areas to investigate the Se status and risks. Therefore, total Hg and Se levels were investigated in scalp hair samples and in daily intake food samples of 150 schoolchildren in Yongshou County of Shaanxi, China. The results showed that the average concentration of Se in children's hair has risen to 302 ng g-1 and significantly increased compared to the data reported decades ago. Children at KBD endemic areas likely have improved Se status due to the Se supplementation in food at recent decades. However, all the children in the study areas still showed lower Se status compared to those in other non-KBD areas of China. The probable daily intake of Se in the study areas was still lower after stopping Se supplementation in food at KBD areas, which is 17.96 µg day-1. Food produced locally cannot satisfy the lowest demand for Se nutrition for local residents. If the interactions of Se-Hg detoxification are considered, Hg intake from food exacerbates Se deficiency at the KBD areas.


Subject(s)
Endemic Diseases , Hair/chemistry , Kashin-Beck Disease/epidemiology , Selenium/analysis , Adolescent , Child , Child, Preschool , China/epidemiology , Diet , Dietary Exposure , Female , Humans , Male , Mercury/analysis , Scalp , Selenium/administration & dosage , Triticum/chemistry
17.
Environ Sci Technol ; 51(21): 12321-12328, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-28958148

ABSTRACT

Rice consumption is the primary pathway of methylmercury (MeHg) exposure for residents in mercury-mining areas of Guizhou Province, China. In this study, compound-specific stable isotope analysis (CSIA) of MeHg was performed on rice samples collected in the Wanshan mercury mining area. An enrichment of 2.25‰ in total Hg (THg) δ202Hg was observed between rice and human hair, and THg Δ199Hg in hair was 0.12‰ higher than the value in rice. Rice and human hair samples in this study show distinct Hg isotope signatures compared to those of fish and human hair of fish consumers collected in China and other areas. Distinct Hg isotope signatures were observed between IHg and MeHg in rice samples (in mean ± standard deviation: δ202HgIHg at -2.30‰ ± 0.49‰, Δ199HgIHg at -0.08‰ ± 0.04‰, n = 7; δ202HgMeHg at -0.80‰ ± 0.25‰, Δ199HgMeHg at 0.08‰ ± 0.04‰, n = 7). Using a binary mixing model, it is estimated that the atmospheric Hg contributed 31% ± 16% of IHg and 17% ± 11% of THg in the rice samples and the IHg in soil caused by past mining activities contributed to the remaining Hg. This study demonstrated that Hg stable isotopes are good tracers of human MeHg exposure to fish and rice consumption, and the isotope data can be used for identifying the sources of IHg and MeHg in rice.


Subject(s)
Environmental Monitoring , Mercury Isotopes , Mercury , Animals , China , Humans , Methylmercury Compounds , Mining , Oryza
18.
Article in English | MEDLINE | ID: mdl-27834827

ABSTRACT

To evaluate the mercury (Hg) exposure level of children located in a Hg mining area, total Hg concentrations and speciation were determined in hair and urine samples of children in the Wanshan Hg mining area, Guizhou Province, China. Rice samples consumed by these same children were also collected for total mercury (THg) and methyl-mercury (MeHg) analysis. The geometric mean concentrations of THg and MeHg in the hair samples were 1.4 (range 0.50-6.0) µg/g and 1.1 (range 0.35-4.2) µg/g, respectively, while the geometric mean concentration of urine Hg (UHg) was 1.4 (range 0.09-26) µg/g Creatinine (Cr). The average of the probable daily intake (PDI) of MeHg via rice consumption was 0.052 (0.0033-0.39) µg/kg/day, which significantly correlated with the hair MeHg concentrations (r = 0.55, p < 0.01), indicating that ingestion of rice is the main pathway of MeHg exposure for children in this area. Furthermore, 18% (26/141) of the PDIs of MeHg exceeded the USEPA Reference Dose (RfD) of 0.10 µg/kg/day, indicating that children in this area are at a high MeHg exposure level. This paper for the first time evaluates the co-exposure levels of IHg and MeHg of children living in Wanshan mining area, and revealed the difference in exposure patterns between children and adults in this area.


Subject(s)
Environmental Exposure , Environmental Pollutants/metabolism , Mercury/metabolism , Methylmercury Compounds/metabolism , Oryza/chemistry , Adolescent , Child , China , Environmental Monitoring , Environmental Pollutants/urine , Female , Hair/chemistry , Humans , Male , Mercury/urine , Methylmercury Compounds/urine
19.
Environ Sci Technol ; 49(16): 9682-9, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26189659

ABSTRACT

Rice can be the main route of methylmercury (MeHg) exposure for rice-consuming populations living in area where mercury (Hg) is mined. However, the current risk assessment paradigm for MeHg exposure is based on epidemiological data collected from fish-consuming populations. This study was designed to evaluate the relationship between dietary MeHg intake and human body burden in a rice -consuming population from the Wanshan Hg mining area in China. Hair MeHg concentrations averaged 2.07 ± 1.79 µg/g, and the average blood MeHg concentration across the study area ranged from 2.20 to 9.36 µg/L. MeHg constituted 52.8 ± 17.5% and 71.7 ± 18.2% of total Hg (THg) on average in blood and hair samples, respectively. Blood and hair MeHg concentrations, rather than THg, can be used as a proxy of human MeHg exposure. Hair MeHg levels showed no significant monthly variation; however, hair THg can be impacted by inorganic Hg exposure. The toxicokinetic model of MeHg exposure based on fish consumption underestimated the human hair MeHg levels, and this may be a consequence of the high hair-to-blood MeHg ratio (361 ± 105) in the studied rice-consuming population. The use of risk assessment models based on fish consumption may not be appropriate for inland mining areas where rice is the staple food.


Subject(s)
Food Contamination , Methylmercury Compounds/analysis , Mining , Oryza , Body Burden , China , Environmental Pollutants/analysis , Environmental Pollutants/blood , Feeding Behavior , Female , Hair/chemistry , Humans , Methylmercury Compounds/blood , Risk Assessment
20.
Environ Res ; 140: 198-204, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25863593

ABSTRACT

Rice can accumulate methylmercury (MeHg) and rice consumption is the main route of MeHg exposure for the local population in Guizhou, China. However, inorganic Hg (IHg) load in human body is not comprehensively studied in highly Hg polluted areas such as Hg mining areas. This study is designed to evaluate human IHg exposure, related renal effects and possible pathways in Wanshan Hg mining area, Guizhou, Southwest China. Residents lived within 3 km to the mine waste heaps showed high Urine Hg (UHg) concentrations and the geometrical means (Geomean) of UHg were 8.29, 5.13, and 10.3 µg/g Creatinine (Cr) at site A, D, and E, respectively. It demonstrated a gradient of UHg concentrations with the distance from the pollution sources. A significantly positive correlation between paired results for UHg concentrations and serum creatinine (SCr) was observed in this study, but not for UHg and blood urea nitrogen (BUN). There are significant increases of SCr in two quartiles with high UHg concentrations. The results indicated that human IHg exposure may cause impairment of renal function. By calculation of Probable Daily Intake from different routes, we found that dietary intake is the main pathway of IHg exposure for the local population, rather than inhalation of Hg vapor.


Subject(s)
Environmental Exposure , Kidney/drug effects , Mercury/toxicity , Mining , Soil Pollutants/toxicity , China , Humans , Mercury/analysis , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...