Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Acta Pharm Sin B ; 14(3): 1400-1411, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38486988

ABSTRACT

The self-assembly prodrugs are usually consisted of drug modules, activation modules, and assembly modules. Keeping the balance between efficacy and safety by selecting suitable modules remains a challenge for developing prodrug nanoassemblies. This study designed four docetaxel (DTX) prodrugs using disulfide bonds as activation modules and different lengths of branched-chain fatty alcohols as assembly modules (C16, C18, C20, and C24). The lengths of the assembly modules determined the self-assembly ability of prodrugs and affected the activation modules' sensitivity. The extension of the carbon chains improved the prodrugs' self-assembly ability and pharmacokinetic behavior while reducing the cytotoxicity and increased cumulative toxicity. The use of C20 can balance efficacy and safety. These results provide a great reference for the rational design of prodrug nanoassemblies.

2.
ACS Appl Mater Interfaces ; 14(45): 51200-51211, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36397309

ABSTRACT

Prodrug-based self-assembled nanoparticles combined with the merits of nanotechnology and prodrugs strategies have gradually become a research trending topic in the field of drug delivery. These prodrugs usually consist of parent drugs, connecting bonds, and modifying chains. The influences of the connecting bonds and modifying chains on the pharmaceutical characteristics, in vivo delivery fate, and antitumor activity of prodrug nanoassemblies remain elusive. Herein, three docetaxel (DTX) prodrugs were designed using sulfur bonds (thioether bond or disulfide bond) as connecting bonds and fatty alcohols (straight chain or branched chain) as modifying chains. Interestingly, the difference between connecting bonds and modifying chains deeply influenced the colloidal stability, redox responsive drug release, cytotoxicity, pharmacokinetic properties, tumor accumulation, and antitumor effect of prodrug nanoassemblies. DTX conjugated with branched chain fatty alcohols via disulfide bonds (HUA-SS-DTX) significantly improved the antitumor efficiency of DTX and reduced the systematic toxicity. Our study elaborates on the vital role of connecting bonds and modifying chains in the rational design of prodrug nanoassemblies.


Subject(s)
Prodrugs , Prodrugs/chemistry , Cell Line, Tumor , Docetaxel , Disulfides/chemistry , Fatty Alcohols
SELECTION OF CITATIONS
SEARCH DETAIL
...