Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(18): 8474-8480, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37671914

ABSTRACT

Bottom-up synthesized graphene nanoribbons (GNRs) are increasingly attracting interest due to their atomically controlled structure and customizable physical properties. In recent years, a range of GNR-based field-effect transistors (FETs) has been fabricated, with several demonstrating quantum-dot (QD) behavior at cryogenic temperatures. However, understanding the relationship between the cryogenic charge-transport characteristics and the number of the GNRs in the device is challenging, as the length and location of the GNRs in the junction are not precisely controlled. Here, we present a methodology based on a dual-gate FET that allows us to identify different scenarios, such as single GNRs, double or multiple GNRs in parallel, and a single GNR interacting with charge traps. Our dual-gate FET architecture therefore offers a quantitative approach for comprehending charge transport in atomically precise GNRs.

2.
Small ; 18(31): e2202301, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35713270

ABSTRACT

The electronic, optical, and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom-up fabrication based on molecular precursors. This approach offers a unique platform for all-carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, the growth, characterization, and device integration of 5-atom wide armchair GNRs (5-AGNRs) are studied, which are expected to have an optimal bandgap as active material in switching devices. 5-AGNRs are obtained via on-surface synthesis under ultrahigh vacuum conditions from Br- and I-substituted precursors. It is shown that the use of I-substituted precursors and the optimization of the initial precursor coverage quintupled the average 5-AGNR length. This significant length increase allowed the integration of 5-AGNRs into devices and the realization of the first field-effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. The study highlights that the optimized growth protocols can successfully bridge between the sub-nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integration of GNRs.

3.
Adv Sci (Weinh) ; 9(19): e2200707, 2022 07.
Article in English | MEDLINE | ID: mdl-35419988

ABSTRACT

BN-heteroarenes, which employ both boron and nitrogen in aromatic hydrocarbons, have gained great attention in the fields of organic chemistry and materials science. Nevertheless, the extensive studies on BN-heteroarenes are largely limited to 1,2-azaborine-based compounds with B-N covalent bonds, whereas 1,3- and 1,4-BN-heteroarenes are relatively rare due to their greater challenge in the synthesis. Recently, significant progresses have been achieved in the synthesis and applications of BN-heteroarenes featuring 1,4-azaborines, especially driven by their significant potential as multiresonant thermally activated delayed fluorescence (MR-TADF) materials. Therefore, it is timely to review these advances from the chemistry perspective. This review summarizes the synthetic methods and recent achievements of 1,4-azaborine-based BN-heteroarenes and discusses their unique properties and potential applications of this emerging class of materials, highlighting the value of 1,4-BN-heteroarenes beyond MR-TADF materials. It is hoped that this review would stimulate the conversation and cooperation between chemists who are interested in azaborine chemistry and materials scientists working in the fields of organic optoelectronics, metal catalysis, and carbon-based nanoscience etc.


Subject(s)
Aza Compounds , Hydrocarbons, Aromatic , Aza Compounds/chemistry , Boron/chemistry , Boron Compounds/chemistry , Nitrogen/chemistry
4.
Angew Chem Int Ed Engl ; 61(24): e202201464, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35344621

ABSTRACT

Despite the remarkable synthetic accomplishments in creating diverse polycyclic aromatic hydrocarbons with B-N bonds (BN-PAHs), their optoelectronic applications have been less exploited. Herein, we report the achievement of high-mobility organic semiconductors based on existing BN-PAHs through a "periphery engineering" strategy. Tetraphenyl- and diphenyl-substituted BN-anthracenes (TPBNA and DPBNA, respectively) are designed and synthesized. DPBNA exhibits the highest hole mobility of 1.3 cm2  V-1 s-1 in organic field-effect transistors, significantly outperforming TPBNA and all the reported BN-PAHs. Remarkably, this is the first BN-PAH with mobility over 1 cm2  V-1 s-1 , which is a benchmark value for practical applications as compared with amorphous silicon. Furthermore, high-performance phototransistors based on DPBNA are also demonstrated, implying the high potential of BN-PAHs for optoelectronic applications when the "periphery engineering" strategy is implemented.

SELECTION OF CITATIONS
SEARCH DETAIL
...