Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(16): e35925, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39224300

ABSTRACT

Existing remaining useful life (RUL) prediction methods considering multi-source variability were not applicable to the situation that the uneven measurement interval distribution and inconsistent measurement frequency of degrading equipment. This type of method also has ignored the variability of adaptive drift in the future degradation process. In view of this, based on adaptive Wiener process, the paper proposes a new nonlinear degradation method of the RUL prediction. Firstly, adopting the adaptive Wiener process, we have constructed the nonlinear degradation model with multi-source variability, which randomness of the parameters in the nonlinear function. Secondly, the real-time estimation of multiple hidden states can be realized by the particle filter algorithm. It has derived the RUL distribution in the sense of first hitting time. Using monitoring data of degrading equipment, the adaptive update of model parameters was implemented by expectation maximization algorithm. Finally, the effectiveness and superiority of the proposed model are validated through numerical simulation and lithium-ion battery experiments. The results show that it can effectively improve the prediction accuracy, which has potential application value.

2.
Sensors (Basel) ; 19(6)2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30917549

ABSTRACT

Owing to operating condition changing, physical mutation, and sudden shocks, degradation trajectories usually exhibit multi-phase features, and the abrupt jump often appears at the changing time, which makes the traditional methods of lifetime estimation unavailable. In this paper, we mainly focus on how to estimate the lifetime of the multi-phase degradation process with abrupt jumps at the change points under the concept of the first passage time (FPT). Firstly, a multi-phase degradation model with jumps based on the Wiener process is formulated to describe the multi-phase degradation pattern. Then, we attain the lifetime's closed-form expression for the two-phase model with fixed jump relying on the distribution of the degradation state at the change point. Furthermore, we continue to investigate the lifetime estimation of the degradation process with random effect caused by unit-to-unit variability and the multi-phase degradation process. We extend the results of the two-phase case with fixed parameters to these two cases. For better implementation, a model identification method with off-line and on-line parts based on Expectation Maximization (EM) algorithm and Bayesian rule is proposed. Finally, a numerical case study and a practical example of gyro are provided for illustration.

SELECTION OF CITATIONS
SEARCH DETAIL