Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Int J Surg ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38759695

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) are found in primary and advanced tumours. They are primarily involved in tumour progression through complex mechanisms with other types of cells in the tumour microenvironment. However, essential fibroblasts-related genes (FRG) in bladder cancer still need to be explored, and there is a shortage of an ideal predictive model or molecular subtype for the progression and immune therapeutic assessment for bladder cancer, especially muscular-invasive bladder cancer based on the FRG. MATERIALS AND METHODS: CAF-related genes of bladder cancer were identified by analyzing single-cell RNA sequence datasets, and bulk transcriptome datasets and gene signatures were used to characterize them. Then, ten types of machine learning algorithms were utilized to determine the hallmark FRG and construct the FRG index (FRGI) and subtypes. Further molecular subtypes combined with CD8+ T-cells were established to predict the prognosis and immune therapy response. RESULTS: 54 BLCA-related FRG were screened by large-scale scRNA-sequence datasets. The machine learning algorithm established a 3-genes FRG index (FRGI). High FRGI represented a worse outcome. Then, FRGI combined clinical variables to construct a nomogram, which shows high predictive performance for the prognosis of bladder cancer. Furthermore, the BLCA datasets were separated into two subtypes - fibroblast hot and cold types. In five independent BLCA cohorts, the fibroblast hot type showed worse outcomes than the cold type. Multiple cancer-related hallmark pathways are distinctively enriched in these two types. In addition, high FRGI or fibroblast hot type shows a worse immune therapeutic response. Then, four subtypes called CD8-FRG subtypes were established under the combination of FRG signature and activity of CD8+ T-cells, which turned out to be effective in predicting the prognosis and immune therapeutic response of bladder cancer in multiple independent datasets. Pathway enrichment analysis, multiple gene signatures, and epigenetic alteration characterize the CD8-FRG subtypes and provide a potential combination strategy method against bladder cancer. CONCLUSIONS: In summary, we established a novel FRGI and CD8-FRG subtype by large-scale datasets and organized analyses, which could accurately predict clinical outcomes and immune therapeutic response of BLCA after surgery.

2.
Aging (Albany NY) ; 16(9): 7622-7646, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38728235

ABSTRACT

Renal cell carcinoma (RCC) is one of the most prevalent types of urological cancer. Exosomes are vesicles derived from cells and have been found to promote the development of RCC, but the potential biomarker and molecular mechanism of exosomes on RCC remain ambiguous. Here, we first screened differentially expressed exosome-related genes (ERGs) by analyzing The Cancer Genome Atlas (TCGA) database and exoRBase 2.0 database. We then determined prognosis-related ERGs (PRERGs) by univariate Cox regression analysis. Gene Dependency Score (gDS), target development level, and pathway correlation analysis were utilized to examine the importance of PRERGs. Machine learning and lasso-cox regression were utilized to screen and construct a 5-gene risk model. The risk model showed high predictive accuracy for the prognosis of patients and proved to be an independent prognostic factor in three RCC datasets, including TCGA-KIRC, E-MTAB-1980, and TCGA-KIRP datasets. Patients with high-risk scores showed worse outcomes in different clinical subgroups, revealing that the risk score is robust. In addition, we found that immune-related pathways are highly enriched in the high-risk group. Activities of immune cells were distinct in high-/low-risk groups. In independent immune therapeutic cohorts, high-risk patients show worse immune therapy responses. In summary, we identified several exosome-derived genes that might play essential roles in RCC and constructed a 5-gene risk signature to predict the prognosis of RCC and immune therapy response.


Subject(s)
Carcinoma, Renal Cell , Exosomes , Kidney Neoplasms , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/therapy , Humans , Exosomes/genetics , Exosomes/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/immunology , Kidney Neoplasms/therapy , Prognosis , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Immunotherapy , Female , Databases, Genetic , Male , Risk Assessment , Risk Factors
3.
Lab Chip ; 24(7): 1867-1874, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38487919

ABSTRACT

Microfluidic lab-on-a-chip technologies enable the analysis and manipulation of small fluid volumes and particles at small scales and the control of fluid flow and transport processes at the microscale, leading to the development of new methods to address a broad range of scientific and medical challenges. Microfluidic and lab-on-a-chip technologies have made a noteworthy impact in basic, preclinical, and clinical research, especially in hematology and vascular biology due to the inherent ability of microfluidics to mimic physiologic flow conditions in blood vessels and capillaries. With the potential to significantly impact translational research and clinical diagnostics, technical issues and incentive mismatches have stymied microfluidics from fulfilling this promise. We describe how accessibility, usability, and manufacturability of microfluidic technologies should be improved and how a shift in mindset and incentives within the field is also needed to address these issues. In this report, we discuss the state of the microfluidic field regarding current limitations and propose future directions and new approaches for the field to advance microfluidic technologies closer to translation and clinical use. While our report focuses on using blood as the prototypical biofluid sample, the proposed ideas and research directions can be extrapolated to other areas of hematology, oncology, biology, and medicine.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Microfluidics/methods , Microfluidic Analytical Techniques/methods , Lab-On-A-Chip Devices , Translational Research, Biomedical
4.
Biomimetics (Basel) ; 9(2)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38392124

ABSTRACT

For people who have experienced a spinal cord injury or an amputation, the recovery of sensation and motor control could be incomplete despite noteworthy advances with invasive neural interfaces. Our objective is to explore the feasibility of a novel biohybrid robotic hand model to investigate aspects of tactile sensation and sensorimotor integration with a pre-clinical research platform. Our new biohybrid model couples an artificial hand with biological neural networks (BNN) cultured in a multichannel microelectrode array (MEA). We decoded neural activity to control a finger of the artificial hand that was outfitted with a tactile sensor. The fingertip sensations were encoded into rapidly adapting (RA) or slowly adapting (SA) mechanoreceptor firing patterns that were used to electrically stimulate the BNN. We classified the coherence between afferent and efferent electrodes in the MEA with a convolutional neural network (CNN) using a transfer learning approach. The BNN exhibited the capacity for functional specialization with the RA and SA patterns, represented by significantly different robotic behavior of the biohybrid hand with respect to the tactile encoding method. Furthermore, the CNN was able to distinguish between RA and SA encoding methods with 97.84% ± 0.65% accuracy when the BNN was provided tactile feedback, averaged across three days in vitro (DIV). This novel biohybrid research platform demonstrates that BNNs are sensitive to tactile encoding methods and can integrate robotic tactile sensations with the motor control of an artificial hand. This opens the possibility of using biohybrid research platforms in the future to study aspects of neural interfaces with minimal human risk.

5.
Opt Lett ; 48(23): 6136-6139, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38039210

ABSTRACT

For in-vivo polarimetry such as Mueller matrix endoscopy of human internal organ cavities, the complicated undulating tissue surfaces deliver an inescapable occurrence of oblique incidence, which induce a prominent aberration to backscattering tissue polarimetry. In this Letter, we quantitatively analyze such polarimetric aberration on polarization basic parameters derived from the Mueller matrix. A correlation heatmap is obtained as applicable criteria to select an appropriate incident angle for different polarization basic parameters. Based on the analyzing results, we propose two aberration optimization strategies of parameter selection and azimuth rotation, which are suitable for tissue samples with randomly and well-aligned fiber textures, respectively. Both strategies are demonstrated to be effective in the ex-vivo human gastric muscularis tissue experiment. The findings presented in this Letter can be useful to provide accurate polarization imaging results, widely applied on in-vivo polarimetric endoscopy for tissues with complicated surface topography.


Subject(s)
Endoscopy , Humans , Incidence , Spectrum Analysis/methods
6.
J Vis Exp ; (200)2023 10 13.
Article in English | MEDLINE | ID: mdl-37902362

ABSTRACT

Red blood cells (RBCs) are known for their remarkable deformability. They repeatedly undergo considerable deformation when passing through the microcirculation. Reduced deformability is seen in physiologically aged RBCs. Existing techniques to measure cell deformability cannot easily be used for measuring fatigue, the gradual degradation in cell membranes caused by cyclic loads. We present a protocol to evaluate mechanical degradation in RBCs from cyclic shear stresses using amplitude shift keying (ASK) modulation-based electrodeformation in a microfluidic channel. Briefly, the interdigitated electrodes in the microfluidic channel are excited with a low voltage alternating current at radio frequencies using a signal generator. RBCs in suspension respond to the electric field and exhibit positive dielectrophoresis (DEP), which moves cells to the electrode edges. Cells are then stretched due to the electrical forces exerted on the two cell halves, resulting in uniaxial stretching, known as electrodeformation. The level of shear stress and the resultant deformation can be easily adjusted by changing the amplitude of the excitation wave. This enables quantifications of nonlinear deformability of RBCs in response to small and large deformations at high throughput. Modifying the excitation wave with the ASK strategy induces cyclic electrodeformation with programmable loading rates and frequencies. This provides a convenient way for the characterization of RBC fatigue. Our ASK-modulated electrodeformation approach enables, for the first time, a direct measurement of RBC fatigue from cyclic loads. It can be used as a tool for general biomechanical testing, for analyses of cell deformability and fatigue in other cell types and diseased conditions, and can also be combined with strategies to control the microenvironment of cells, such as oxygen tension and biological and chemical cues.


Subject(s)
Erythrocyte Deformability , Erythrocytes , Erythrocytes/physiology , Microfluidics , Cell Membrane , Electrodes , Stress, Mechanical
7.
Biomed Microdevices ; 25(3): 23, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37347436

ABSTRACT

Sickle cell disease is characterized by painful vaso-occlusive crises, in which poorly deformable sickle cells play an important role in the complex vascular obstruction process. Existing techniques are mainly based on optical microscopy and video processing of sickle blood flow under normoxic condition, for measuring vaso-occlusion by a small fraction of dense sickle cells of intrinsic rigidity but not the vaso-occlusion by the rigid, sickled cells due to deoxygenation. Thus, these techniques are not suitable for rapid, point-of-care testing. Here, we integrate electrical impedance sensing and Polydimethylsiloxane-microvascular mimics with controlled oxygen level into a single microfluidic chip, for quantification of vaso-occlusion by rigid, sickled cells within 1 min. Electrical impedance measurements provided a label-free, real-time detection of different sickle cell flow behaviors, including steady flow, vaso-occlusion, and flow recovery in response to the deoxygenation-reoxygenation process that are validated by microscopic videos. Sensitivity of the real part and imaginary part of the impedance signals to the blood flow conditions in both natural sickle cell blood and simulants at four electrical frequencies (10, 50, 100, and 500 kHz) are compared. The results show that the sensitivity of the sensor in detection of vaso-occlusion decreases as electrical frequency increases, while the higher frequencies are preferable in measurement of steady flow behavior. Additional testing using sickle cell simulants, chemically crosslinked normal red blood cells, shows same high sensitivity in detection of vaso-occlusion as sickle cell vaso-occlusion under deoxygenation. This work enables point-of-care testing potentials in rapid, accurate detection of steady flow and sickle cell vaso-occlusion from microliter volume blood specimens. Quantification of sickle cell rheology in response to hypoxia, may provide useful indications for not only the kinetics of cell sickling, but also the altered hemodynamics as obseved at the microcirculatory level.


Subject(s)
Anemia, Sickle Cell , Humans , Electric Impedance , Microcirculation , Anemia, Sickle Cell/diagnosis , Microfluidics , Lab-On-A-Chip Devices
8.
Environ Pollut ; 330: 121817, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37182579

ABSTRACT

Along with the increasing production and application of graphene oxide (GO), its environmental health and safety (EHS) risks have become a global concern. Numerous studies have investigated the biosafety and toxicity mechanisms associated with GO, however, the majority of previous studies were based on its direct toxic dose, which could not reflect the realistic state of environmental exposure of GO with an indirect toxic dose (low dose). Meanwhile, the effects of low-dose GO on the progression of tumors are still unclearly. Herein, we found that GO can promote multiple types of tumor cell proliferation under its low-dose treatment. Moreover, the lateral size of GO has no obvious distinction on its promoting effect on tumor proliferation. The mechanistic investigation revealed that low-dose GO treatment increased the expression level of integrin αV protein, a cell membrane receptor, and further lead to the constitutively activated PI3K/AKT/mTOR signaling pathway and promoted mitotic progression. Collectively, these findings increased our understanding of the detrimental effects of GO in promoting tumor proliferation, as well as improved our biosafety assessment at its realistic exposure doses.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Integrin alphaV/metabolism , Integrin alphaV/pharmacology , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation , Apoptosis , Cell Line, Tumor
9.
J Transl Med ; 21(1): 281, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37101292

ABSTRACT

BACKGROUND: The primary cilia (PC) is a microtubule-based and nonmotile organelle which protrudes from the surface of almost all mammalian cells. At present, PC has been found to be a deficiency or loss in multiple cancers. Restoring PC could be a novel targeting therapy strategy. Our research showed that PC was reduced in human bladder cancer (BLCA) cells, and PC deficiency promotes cell proliferation. However, the concrete mechanisms remain unknown. SCL/TAL1 interrupting locus (STIL), a PC-related protein, was screened in our previous study and could influence the cell cycle by regulating PC in tumor cells. In this study, we aimed to elucidate the function of STIL for PC to explore the underlying mechanism of PC in BLCA. METHODS: Public database analysis, western blot, and enzyme-linked immunosorbent assay (ELISA) were used to screen genes and explore gene expression alteration. Immunofluorescence and western blot were utilized to investigate PC. Wound healing assay, clone formation assay, and CCK-8 assay were used to explore cell migration, growth, and proliferation. The co-immunoprecipitation and western blot were employed to reveal the interaction of STIL and AURKA. RESULTS: We found that high STIL expression is correlated with poor outcomes of BLCA patients. Further analysis revealed that STIL overexpression could inhibit PC formation, activate SHH signaling pathways, and promote cell proliferation. In contrast, STIL-knockdown could promote PC formation, inactivate SHH signaling, and inhibit cell proliferation. Furthermore, we found that the regulatory functions of STIL for PC depend on AURKA. STIL could influence proteasome activity and maintain AURKA stabilization. AURKA-knockdown could reverse PC deficiency caused by STIL overexpression for PC in BLCA cells. We observed that co-knockdown in STIL and AURKA significantly enhanced PC assembly. CONCLUSION: In summary, our result provides a potential therapy target for BLCA based on the restoration of PC.


Subject(s)
Aurora Kinase A , Urinary Bladder Neoplasms , Animals , Humans , Aurora Kinase A/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Cilia/metabolism , Cell Proliferation/genetics , Urinary Bladder Neoplasms/genetics , Cell Line, Tumor , Mammals
10.
J Laryngol Otol ; 137(2): 205-212, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35094723

ABSTRACT

OBJECTIVE: This study aimed to evaluate the clinical significance of granulation tissue after endoscopic carbon dioxide laser surgery for glottic cancer. METHOD: This was a retrospective review of 36 patients who underwent endoscopic carbon dioxide laser surgery for T1 and T2 glottic cancer. Post-operative, endoscopic examinations were rated by three blinded otolaryngologists for time to heal and presence of granulation. Patient and surgical factors were compared with time to heal and granulation. RESULTS: A total of 16 of 36 wounds (44 per cent) developed granulation tissue, and 24 wounds (67 per cent) healed without requiring surgical intervention. A total of 7 of 8 wounds biopsied more than 3.5 months after surgery had persistent cancer versus 1 of 4 wounds biopsied at equal to or less than 3.5 months (85.7 per cent vs 25 per cent; p = 0.03). Biopsy at more than 3.5 months was associated with 28-fold increased odds of cancer in biopsy compared with biopsy at equal to or less than 3.5 months (odds ratio, 28.0; 95 per cent confidence interval, 1.088-373.3). CONCLUSION: After carbon dioxide laser surgery for glottic cancer, development of granulation tissue is common. Granulation that persists for more than 3.5 months necessitates biopsy because of increased risk of persistent cancer.


Subject(s)
Laryngeal Neoplasms , Laser Therapy , Lasers, Gas , Tongue Neoplasms , Humans , Laryngeal Neoplasms/surgery , Laryngeal Neoplasms/pathology , Treatment Outcome , Carbon Dioxide , Lasers, Gas/therapeutic use , Glottis/surgery , Glottis/pathology , Tongue Neoplasms/surgery , Laser Therapy/adverse effects , Microsurgery , Retrospective Studies , Neoplasm Staging
11.
Sci Rep ; 12(1): 20264, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36424377

ABSTRACT

Heart failure is a chronic disease, the symptoms of which occur due to a lack of cardiac output. It can be better managed with continuous and real time monitoring. Some efforts have been made in the past for the management of heart failure. Most of these efforts were based on a single parameter for example thoracic impedance or heart rate alone. Herein, we report a wearable device that can provide monitoring of multiple physiological parameters related to heart failure. It is based on the sensing of multiple parameters simultaneously including thoracic impedance, heart rate, electrocardiogram and motion activity. These parameters are measured using different sensors which are embedded in a wearable belt for their continuous and real time monitoring. The healthcare wearable device has been tested in different conditions including sitting, standing, laying, and walking. Results demonstrate that the reported wearable device keeps track of the aforementioned parameters in all conditions.


Subject(s)
Heart Failure , Wearable Electronic Devices , Humans , Heart Rate , Heart Failure/diagnosis
12.
Front Immunol ; 13: 922929, 2022.
Article in English | MEDLINE | ID: mdl-36189275

ABSTRACT

Necroptosis is a regulated form of cell necroptotic process, playing a pivotal role in tumors. In renal cell cancer (RCC), inhibiting necroptosis could promote the proliferation of tumor cells. However, the molecular mechanisms and prognosis prediction of necroptotic-process-related genes in RCC are still unclear. In this study, we first identified the necroptotic process prognosis-related genes (NPRGss) by analyzing the kidney renal clear cell carcinoma (KIRC) data in The Cancer Genome Atlas (TCGA, n=607). We systematically analyzed the expression alteration, clinical relevance, and molecular mechanisms of NPRGss in renal clear cell carcinoma. We constructed an NPRGs risk signature utilizing the least absolute shrinkage and selection operator (LASSO) Cox regression analysis on the basis of the expression of seven NPRGss. We discovered that the overall survival (OS) of KIRC patients differed significantly in high- or low-NPRGs-risk groups. The univariate/multivariate Cox regression revealed that the NPRGs risk signature was an independent prognosis factor in RCC. The gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were used to explore the molecular mechanisms of NPRGss. Immune-/metabolism-related pathways showed differential enrichment in high-/low-NPRGs-risk groups. The E-MTAB-1980, TCGA-KIRP, GSE78220, the cohort of Alexandra et al., and IMvigor210 cohort datasets were respectively used as independent validation cohorts of NPRGs risk signature. The patients in high- or low-NPRGs-risk groups showed different drug sensitivity, immune checkpoint expression, and immune therapy response. Finally, we established a nomogram based on the NPRGs risk signature, stage, grade, and age for eventual clinical translation; the nomogram possesses an accurate and stable prediction effect. The signature could predict patients' prognosis and therapy response, which provides the foundation for further clinical therapeutic strategies for RCC patients.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Humans , Kidney/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Necroptosis , Prognosis
13.
Sci Rep ; 12(1): 15278, 2022 09 10.
Article in English | MEDLINE | ID: mdl-36088464

ABSTRACT

The human placenta is a critical organ, mediating the exchange of nutrients, oxygen, and waste products between fetus and mother. Placental malaria (PM) resulted from Plasmodium falciparum infections causes up to 200 thousand newborn deaths annually, mainly due to low birth weight, as well as 10 thousand mother deaths. In this work, a placenta-on-a-chip model is developed to mimic the nutrient exchange between the fetus and mother under the influence of PM. In this model, trophoblasts cells (facing infected or uninfected blood simulating maternal blood and termed "trophoblast side") and human umbilical vein endothelial cells (facing uninfected blood simulating fetal blood and termed "endothelial" side) are cultured on the opposite sides of an extracellular matrix gel in a compartmental microfluidic system, forming a physiological barrier between the co-flow tubular structure to mimic a simplified maternal-fetal interface in placental villi. The influences of infected erythrocytes (IEs) sequestration through cytoadhesion to chondroitin sulfate A (CSA) expressed on the surface of trophoblast cells, a critical feature of PM, on glucose transfer efficiency across the placental barrier was studied. To create glucose gradients across the barrier, uninfected erythrocyte or IE suspension with a higher glucose concentration was introduced into the "trophoblast side" and a culture medium with lower glucose concentration was introduced into the "endothelial side". The glucose levels in the endothelial channel in response to CSA-adherent erythrocytes infected with CS2 line of parasites in trophoblast channel under flow conditions was monitored. Uninfected erythrocytes served as a negative control. The results demonstrated that CSA-binding IEs added resistance to the simulated placental barrier for glucose perfusion and decreased the glucose transfer across this barrier. The results of this study can be used for better understanding of PM pathology and development of models useful in studying potential treatment of PM.


Subject(s)
Malaria , Placenta , Chondroitin Sulfates , Female , Glucose , Human Umbilical Vein Endothelial Cells , Humans , Infant, Newborn , Microfluidics , Pregnancy
14.
Environ Pollut ; 306: 119421, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35533959

ABSTRACT

Graphene oxide (GO) has been widely studied and applied in numerous industrial fields and biomedical fields for its excellent physical and chemical properties. Along with the production and applications of GO persist increasing, the environmental health and safety risk (EHS) of GO has been widely studied. However, previous studies almost focused on the biotoxicity of pristine GO under a relatively high exposure dose, without considering its transformation process within environmental and biological mediums. Meanwhile, its secondary toxicity or synergistic effects have not been taken seriously. Here, two different kinds of artificial lung fluids were adopted to incubate pristine GO to mimic the biotransformation process of GO in the lung fluids. And, we explored that biotransformation within the artificial lung fluids could significantly change the physicochemical properties of GO and could enhance its biotoxicity. To reveal the synergistic effects of GO and toxic metal ions, we uncovered that GO could enhance the intracellular content of metal ions by inhibiting the efflux function of ATP binding cassette (ABC) transporters which are distributed on the cellular membrane, and artificial lung fluids incubation of GO could enhance this synergistic effect. Finally, toxic metal ions induced a series of toxic reactions through oxidative stress response and promoted cell death. Moreover, consistent with the results of in vitro experiments, the lungs of mice exposed to GOs combined with Cd exhibited significant inflammation and oxidative stress compared with Cd treatment alone, and it was more remarkable within the mice which were treated with bio-transformed GOs. In summary, this study explored the impact and mechanism of biotransformation of GO in the lung fluids on the synergistic and secondary effects between GO and metal ions.


Subject(s)
Cadmium , Graphite , Animals , Biotransformation , Cadmium/chemistry , Cadmium/toxicity , Graphite/chemistry , Ions , Lung/metabolism , Metals , Mice
15.
Insects ; 13(4)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35447815

ABSTRACT

The fall armyworm (FAW), Spodoptera frugiperda, is one of the most important invasive species and causes great damage to various host crops in China. In this study, the diversity and function of gut bacteria in the 5th instar larvae of FAW fed on maize, wheat, potato and tobacco leaves were analyzed through 16S rRNA sequencing. A total of 1324.25 ± 199.73, 1313.5 ± 74.87, 1873.00 ± 190.66 and 1435.25 ± 139.87 operational taxonomic units (OTUs) from the gut of FAW fed on these four different host plants were detected, respectively. Firmicutes, Proteobacteria and Bacteroidetes were the most abundant bacterial phyla. Beta diversity analysis showed that the gut bacterial community structure of larvae fed on different host plants was significantly differentiated. At the genus level, the abundance of Enterococcus in larvae fed on wheat was significantly lower than those fed on the other three host plants. Enterobacter and ZOR0006 were dominant in FAW fed on tobacco leaves, and in low abundance in larvae fed on wheat. Interestingly, when fed on Solanaceae (tobacco and potato) leaves which contained relative higher levels of toxic secondary metabolites than Gramineae (wheat and maize), the genera Enterococcus, Enterobacter and Acinetobacter were significantly enriched. The results indicated that gut bacteria were related to the detoxification and adaptation of toxic secondary metabolites of host plants in FAW. Further analysis showed that replication, repair and nucleotide metabolism functions were enriched in the gut bacteria of larvae fed on tobacco and potato. In conclusion, the gut bacterial diversity and community composition in FAW larvae fed on different host plants showed significant differences, and the insect is likely to regulate their gut bacteria for adaptation to different host plants.

16.
Osteoporos Int ; 33(7): 1569-1577, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35368223

ABSTRACT

This study analyzed elderly women who had chest radiograph and chest CT with indications other than spine disorders. Using CT images as reference, the study demonstrates that radiograph can miss a high portion of mild endplate depression. Detection of endplate depression is confounded by the limitation of projectional overlay for radiograph. INTRODUCTION: The definition of radiographic OVF (osteoporotic vertebral fracture) remains controversial. Some authors suggest all OVFs should demonstrate endplate fracture/depression on radiograph. Using CT image as the reference, our study tests the hypothesis that a considerable portion of endplate depressions not seen on radiograph can be detected on CT. METHODS: We retrospectively analyzed 46 female cases (age: 67-94 years) who had both chest radiography and chest CT with indications other than spine disorders. Sixty-six "vertebrae of interest" were identified on radiograph; then, CT images were read side-by-side with lateral chest radiograph. RESULTS: Thirty-eight vertebrae (38/66) had anterior wedging deformity with height loss of < 20% while without radiographic endplate depression. Among them, 28 vertebrae had endplate depression and 8 vertebrae had no endplate depression on CT, while 2 vertebrae with "very" minimal deformity were read as normal on CT. In 9 vertebrae (9/66) with anterior wedging and height loss of ≥ 20%, all had additional endplate depression seen on CT. Five vertebrae (5/66) had ambiguous endplate depression on radiograph, 3 had endplate depression on CT while the other 2 vertebrae in one patient were false positive due to X-ray projection. There were 14 short height vertebrae (14/66) where middle and anterior heights were reduced to the same extent while did not show apparent anterior wedging or bi-concaving. Four cases each had one short height vertebra, and all had endplate depression on CT. Another 4 cases had 2, 2, 3, and 3 adjacent short height vertebrae, respectively, and all did not show endplate depression on CT. In addition, inspection of spine CT showed 10 vertebrae in 9 cases appeared normal on radiograph while demonstrated endplate depression on CT. CONCLUSION: With CT images as reference, radiograph can miss a high portion of mild endplate depressions.


Subject(s)
Osteoporosis , Osteoporotic Fractures , Spinal Fractures , Aged , Aged, 80 and over , Depression/diagnostic imaging , Female , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/injuries , Osteoporotic Fractures/diagnostic imaging , Radiography , Retrospective Studies , Spinal Fractures/diagnostic imaging , Spinal Fractures/surgery , Spine , Thoracic Vertebrae/injuries , Tomography, X-Ray Computed
17.
Front Cell Dev Biol ; 10: 804419, 2022.
Article in English | MEDLINE | ID: mdl-35155425

ABSTRACT

SCL/TAL1 Interrupting locus (STIL) is a ciliary-related gene involved in regulating the cell cycle and duplication of centrioles in dividing cells. STIL has been found disordered in multiple cancers and driven carcinogenesis. However, the molecular mechanisms and biological functions of STIL in cancers remain ambiguous. Here, we systematically analyzed the genetic alterations, molecular mechanisms, and clinical relevance of STIL across >10,000 samples representing 33 cancer types in The Cancer Genome Atlas (TCGA) dataset. We found that STIL expression is up-regulated in most cancer types compared with their adjacent normal tissues. The expression dysregulation of STIL was affected by copy number variation, mutation, and DNA methylation. High STIL expression was associated with worse outcomes and promoted the progression of cancers. Gene Ontology (GO) enrichment analysis and Gene Set Variation Analysis (GSVA) further revealed that STIL is involved in cell cycle progression, Mitotic spindle, G2M checkpoint, and E2F targets pathways across cancer types. STIL expression was negatively correlated with multiple genes taking part in ciliogenesis and was positively correlated with several genes which participated with centrosomal duplication or cilia degradation. Moreover, STIL silencing could promote primary cilia formation and inhibit cell cycle protein expression in prostate and kidney cancer cell lines. The phenotype and protein expression alteration due to STIL silencing could be reversed by IFT88 silencing in cancer cells. These results revealed that STIL could regulate the cell cycle through primary cilia in tumor cells. In summary, our results revealed the importance of STIL in cancers. Targeting STIL might be a novel therapeutic approach for cancers.

18.
IEEE Haptics Symp ; 20222022 Mar.
Article in English | MEDLINE | ID: mdl-37822968

ABSTRACT

Neuroprosthetic limbs reconnect severed neural pathways for control of (and increasingly sensation from) an artificial limb. However, the plastic interaction between robotic and biological components is poorly understood. To gain such insight, we developed a novel noninvasive neuroprosthetic research platform that enables bidirectional electrical communications (action, sensory perception) between a dexterous artificial hand and neuronal cultures living in a multichannel microelectrode array (MEA) chamber. Artificial tactile sensations from robotic fingertips were encoded to mimic slowly adapting (SA) or rapidly adapting (RA) mechanoreceptors. Afferent spike trains were used to stimulate neurons in a region of the neuronal culture. Electrical activity from neurons at another region in the MEA chamber was used as the motor control signal for the artificial hand. Results from artificial neural networks (ANNs) showed that the haptic model used to encode RA or SA fingertip sensations affected biological neural network (BNN) activity patterns, which in turn impacted the behavior of the artificial hand. That is, the exhibited finger tapping behavior of this closed-loop neurorobotic system showed statistical significance (p<0.01) between the haptic encoding methods across two different neuronal cultures and over multiple days. These findings suggest that our noninvasive neuroprosthetic research platform can be used to devise high-throughput experiments exploring how neural plasticity is affected by the mutual interactions between perception and action.

19.
Lab Chip ; 21(18): 3458-3470, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34378625

ABSTRACT

Red blood cells (RBCs) are subjected to recurrent changes in shear stress and oxygen tension during blood circulation. The cyclic shear stress has been identified as an important factor that alone can weaken cell mechanical deformability. The effects of cyclic hypoxia on cellular biomechanics have yet to be fully investigated. As the oxygen affinity of hemoglobin plays a key role in the biological function and mechanical performance of RBCs, the repeated transitions of hemoglobin between its R (high oxygen tension) and T (low oxygen tension) states may impact their mechanical behavior. The present study focuses on developing a novel microfluidic-based assay for characterization of the effects of cyclic hypoxia on cell biomechanics. The capability of this assay is demonstrated by a longitudinal study of individual RBCs in health and sickle cell disease subjected to cyclic hypoxia conditions of various durations and levels of low oxygen tension. The viscoelastic properties of cell membranes are extracted from tensile stretching and relaxation processes of RBCs induced by the electrodeformation technique. Results demonstrate that cyclic hypoxia alone can significantly reduce cell deformability, similar to the fatigue damage accumulated through cyclic mechanical loading. RBCs affected by sickle cell disease are less deformable (significantly higher membrane shear modulus and viscosity) than normal RBCs. The fatigue resistance of sickle RBCs to the cyclic hypoxia challenge is significantly inferior to that of normal RBCs, and this trend is more significant in mature erythrocytes of sickle cells. When the oxygen affinity of sickle hemoglobin is enhanced by anti-sickling drug treatment of 5-hydroxymethyl-2-furfural (5-HMF), sickle RBCs show ameliorated resistance to fatigue damage induced by cyclic hypoxia. These results indicate an important biophysical mechanism underlying RBC senescence in which the cyclic hypoxia challenge alone can lead to mechanical degradation of the RBC membrane. We envision that the application of this assay can be further extended to RBCs in other blood diseases and other cell types.


Subject(s)
Anemia, Sickle Cell , Pharmaceutical Preparations , Erythrocyte Count , Erythrocyte Deformability , Erythrocytes , Humans , Hypoxia , Longitudinal Studies
20.
Biotechnol Bioeng ; 118(10): 4041-4051, 2021 10.
Article in English | MEDLINE | ID: mdl-34232511

ABSTRACT

This article presents the development and testing of a low-cost (<$60), portable, electrical impedance-based microflow cytometer for single-cell analysis under a controlled oxygen microenvironment. The system is based on an AD5933 impedance analyzer chip, a microfluidic chip, and an Arduino microcontroller operated by a custom Android application. A representative case study on human red blood cells (RBCs) affected by sickle cell disease is conducted to demonstrate the capability of the cytometry system. Impedance values of sickle blood samples exhibit remarkable deviations from the common reference line obtained from two normal blood samples. Such deviation is quantified by a conformity score, which allows for the measurement of intrapatient and interpatient variations of sickle cell disease. A low conformity score under oxygenated conditions or drastically different conformity scores between oxygenated and deoxygenated conditions can be used to differentiate a sickle blood sample from normal. Furthermore, an equivalent circuit model of a suspended biological cell is used to interpret the electrical impedance of single flowing RBCs. In response to hypoxia treatment, all samples, regardless of disease state, exhibit significant changes in at least one single-cell electrical property, that is, cytoplasmic resistance and membrane capacitance. The overall response to hypoxia is less in normal cells than those affected by sickle cell disease, where the change in membrane capacitance varies from -23% to seven times as compared with -17% in normal cells. The results reported in this article suggest that the developed method of testing demonstrates the potential application for a low-cost screening technique for sickle cell disease and other diseases in the field and low-resource settings. The developed system and methodology can be extended to analyze cellular response to hypoxia in other cell types.


Subject(s)
Anemia, Sickle Cell/blood , Electric Impedance , Erythrocytes/metabolism , Cell Hypoxia , Flow Cytometry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...