Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(11): 13572-13583, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35285622

ABSTRACT

Scalable and roll-to-roll compatible processing methods have become pressing needs to transfer organic solar cells (OSCs) to realistic energy sources. Herein a new fabrication method of flexible microcomb printing is proposed. The microcomb is based on a PET sheet micromachined into comb teeth by a laser marker. A computational fluid mechanics simulation shows that the fluid flow around the microcomb teeth induces high shear as well as extensional strain rates, which enhance the molecular alignment and lateral mass transport. The PTQ10:Y6-BO OSCs printed by the flexible microcomb demonstrate a substantially increased degree of crystallinity and phase separation with a suitable domain size. Devices printed by the flexible microcomb in air achieve PCEs of up to 15.93%, higher than those of control devices spin-coated in the N2 glovebox. The flexibility of the PET film makes the microcomb teeth contact directly with the substrate without a suspended liquid meniscus, thus facilitating printing on soft or curved substrates. Printing of flexible OSCs and large-area devices are demonstrated. The flexible OSCs exhibit PCEs of up to 13.62%, which is the highest for flexible OSCs made by scalable printing techniques to date. These results make flexible microcomb printing a feasible and promising strategy toward the manufacture of efficient OSCs.

2.
ACS Appl Mater Interfaces ; 13(47): 56375-56384, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34791881

ABSTRACT

Developing manufacturing methods that are scalable and compatible with a roll-to-roll process with low waste of material has become a pressing need to transfer organic photovoltaics (OPVs) to a viable renewable energy source. For this purpose, various spray printing methods have been proposed. Among them, electrospray (ES) is an attractive option due to its negligible material waste, tunable droplet size, and tolerance to the substrate defects and roughness. Conventional ES with a circular spray footprint often makes the droplets well separated and unlikely to merge, giving rise to "coffee rings" which cause a rough and flawed film morphology. Here, a quadrupole electrode is introduced to generate a compressing electric field that squeezes the conical ES profile into the shape of a thin sheet. The numerical simulation and experimental data of the trajectories of sprayed droplets show that the quadrupole apparatus can effectively increase the long axis to short axis ratio of the oval spray footprint and hence bring droplets closer to each other and make the merging more likely for the deposited droplets. By promoting the merging of droplets, individual coffee rings are also suppressed. Thus, the quadrupole ES offers untapped opportunities for effectively reducing voids and improving the flatness of the ES-printed active layer. The devices with a PM6:N3 active layer printed by the sheet ES exhibited the highest power conversion efficiency (PCE) of up to 15.98%, which is a noticeable improvement over that (14.85%) of counterparts fabricated by a conventional conical ES. This is the highest PCE reported for ES-printed OPVs and is one of the most efficient spray-deposited OPVs so far. In addition, the all-spray-printed devices reached a PCE of 14.55%, which is also among the most efficient all-spray-printed OPVs.

3.
ACS Appl Mater Interfaces ; 12(23): 25843-25852, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32419443

ABSTRACT

Developing scalable and robust processing methods with low material waste remains a challenge for organic solar cells (OSCs) to become a practical renewable energy source. Here, we present a novel low-cost processing approach termed as soft porous blade printing (SPBP), which uses a layer of soft porous material such as filter paper as the printing blade. The inherent porous microstructure of the blade offers high shear rates that facilitate the alignment, crystallization, and orientation of active materials during printing. Moreover, by eliminating the suspended liquid meniscus, SPBP relaxes the stringent requirement of gap control and enables continuous ink delivery for uninterrupted film fabrication with adjustable thickness. Higher photovoltaic performances are achieved in the SPBP-printed OSCs than those of the spin-coated counterparts for two nonfullerene-acceptor active-layer systems (Y6:PM6 and PTQ10:IDIC). Y6:PM6 cells printed by SPBP without any additive exhibit power conversion efficiencies up to 14.75%, which is among the highest reported to date for non-spin-coated OSCs.

4.
ACS Appl Mater Interfaces ; 12(24): 27405-27415, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32450683

ABSTRACT

Developing scalable processing methods with low material waste is still one of the remaining challenges for organic photovoltaics (OPVs) to become a practical renewable energy source. Here, we report the first study on printing active layers of OPVs containing non-fullerene acceptors (NFAs) by electrospray (ES). The properties of the solvent significantly influence the interfacial morphology of ES-printed organic thin-films, and solvent engineering is essential to facilitate the formation of efficient active-layer films. We introduce low-vapor-pressure non-halogen solvent o-xylene (OXY) into the high vapor pressure solvent of chloroform to form a binary solvent system with appropriate evaporation time, electric conductivity, and solubility. The characteristic times of the ES process using binary solvents are quantified to provide insights into the dynamic formation of thin films. A longer droplet evaporation time with decent solubility collectively decrease the roughness and domain size of the polymer/NFA blend films, thus increase the photocurrent and fill factor of the ES-printed OPV devices. The ES-printed active layers show enhanced crystallinity and phase separation of NFA molecules than the spin-coated films. The champion cell with an ES-printed PTB7-Th:FOIC active layer exhibits a power conversion efficiency of 9.45%, which is on par with the spin-coated cells and is among the highest of spray-deposited organic solar cells to date. This work demonstrates that ES is an effective method to prepare OPVs on NFAs.

SELECTION OF CITATIONS
SEARCH DETAIL
...