Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 22(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36236232

ABSTRACT

Butt welding is extensively applied in long-distance oil and gas pipelines, and it is of great significance to conduct non-destructive ultrasonic testing of girth welds in order to avoid leakage and safety accidents during pipeline production and operation. In view of the limitations of large transducer size, single fixed beam angle, low detection resolution and high cost of conventional ultrasonic inspection technologies, a 16-channel piezoelectric micro ultrasonic transducer (PMUT) array probe was developed through theoretical analysis and structural optimization design. After the probe impedance characterization, the experimental results show that the theoretical model can effectively guide the design of the ultrasonic transducer array, offering the maximum operating frequency deviation of less than 5%. The ultrasonic echo performance tests indicate that the average -6 dB bandwidth of the PMUT array probe can be up to 77.9%. In addition, the fabricated PMUT array probe has been used to successfully detect five common internal defects in pipeline girth welds. Due to the multiple micro array elements, flexible handling of each element, large bandwidth and high resolution of defect detection, the designed PMUT array probe can provide a good application potential in structural health monitoring and medical ultrasound imaging fields.


Subject(s)
Ultrasonics , Welding , Equipment Design , Transducers , Ultrasonography/methods
2.
Sensors (Basel) ; 22(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35336247

ABSTRACT

The baseline-free damage detection method of Lamb waves has the potential to obtain damage information efficiently in plate structures through damage scattering signals. However, the missing detection of damage occurs occasionally due to the angular scattering characteristic of Lamb waves. To solve this problem, a novel baseline-free damage detection approach based on path scanning at the detection region edges using mobile piezoelectric transducers is proposed herein. Several sensing points carrying separated damage scattering signals were picked out from the scanning paths. By removing the direct and boundary reflected signals, the damage signals were extracted and exported to a delay-and-sum imaging method to locate the damage. Two experiments with and without mobile transducers were conducted to validate the proposed method on an aluminum plate with artificially fabricated crack-like damage. The results show that the proposed baseline-free approach can locate the crack-like damage with high accuracy and efficiency and avoid potential loss of damage information. The proposed baseline-free method provides a novel and practical damage detection approach when considering the angular-dependent scattering characteristic of Lamb waves and can enhance the credibility of results in damage detection.

3.
Sensors (Basel) ; 21(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34450955

ABSTRACT

The piezoelectric MEMS (micro-electro-mechanical systems) scanning mirrors are in a great demand for numerous optoelectronic applications. However, the existing actuation strategies are severely limited for poor compatibility with CMOS process, non-linear control, insufficient mirror size and small angular travel. In this paper, a novel, particularly efficient ScAlN-based piezoelectric MEMS mirror with a pupil size of 10 mm is presented. The MEMS mirror consists of a reflection mirror plate, four meandering springs with mechanical rotation transformation, and eight right-angle trapezoidal actuators designed in Union Jack-shaped form. Theoretical modeling, simulations and comparative analysis have been investigated for optimizing two different device designs. For Device A with a 1 mm-length square mirror, the orthogonal and diagonal static tilting angles are ±36.2°@200 VDC and ±36.2°@180 VDC, respectively, and the dynamic tilting angles increases linearly with the driving voltage. Device B with a 10 mm-length square mirror provides the accessible tilting angles of ±36.0°@200 VDC and ±35.9°@180 VDC for horizontal and diagonal actuations, respectively. In the dynamic actuation regime, the orthogonal and diagonal tilting angles at 10 Hz are ±8.1°/Vpp and ±8.9°/Vpp, respectively. This work confirmed that the Union Jack-shaped arrangement of trapezoidal actuators is a promising option for designing powerful optical devices.

4.
Sensors (Basel) ; 18(10)2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30274191

ABSTRACT

Concrete-filled square steel tube column (CFSSTC) joints are the most important parts of concrete-filled steel tube frame structures. It is of great significance to study the damage of CFSSTC joints under the seismic loads. In this paper, embedded piezoceramic transducers are used to monitor the damage of core concrete of CFSSTC joints under cyclic loading and surface-bonded piezoceramic disks are used to monitor the debonding damage of the steel tube and core concrete of two specimens. The damages of the joints under different loading levels and different loading cycles are evaluated by the received signal of the piezoceramic transducers. The experimental results show that the amplitude of the signal attenuates obviously with the appearance of damage in the joints, and the degree of attenuation increases with the development of the damage. The monitoring results from piezoceramic transducers are basically consistent with the hysteresis loops and skeleton curves of the CFSSTC joints during the cyclic loading. The effectiveness of the piezoceramic transducers are verified by the experimental results in structural health monitoring of the CFSSTC joint under cyclic loading.

5.
Sensors (Basel) ; 18(7)2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29986410

ABSTRACT

L-shaped concrete filled steel tube (L-CFST) columns are used frequently in civil engineering, and the concrete damage inside the L-CFST column is difficult to monitor. This research aims to develop a new method to monitor the internal concrete damage in the L-CFST column by using embedded piezoceramic smart aggregates (SAs) under low frequency cyclic loading. The SA enabled active method is used to monitor the concrete damages near the bottom of the L-CFST columns, and the wavelet packet analysis is used to establish a damage index, which is used to analyze the acquired data. During the experiment, three L-CFST columns with different wall thickness of the steel tube were tested. The experimental results find that the structural damage indices under the low-frequency cyclic loading are basically consistent with the results of the hysteretic curves and the skeleton curve of the specimens, and are in good agreement with the experimental phenomena. We conclude that the use of smart aggregate can directly and clearly reflect the damage process of the concrete core, demonstrating the feasibility of using piezoceramic smart aggregates to monitor the internal concrete damage of the L-CFST column.

6.
Sensors (Basel) ; 18(6)2018 May 23.
Article in English | MEDLINE | ID: mdl-29882909

ABSTRACT

Impact loads can have major adverse effects on the safety of civil engineering structures, such as concrete-filled steel tubular (CFST) columns. The study of mechanical behavior and stress analysis of CFST columns under impact loads is very important to ensure their safety against such loads. At present, the internal stress monitoring of the concrete cores CFST columns under impact loads is still a very challenging subject. In this paper, a PVDF (Polyvinylidene Fluoride) piezoelectric smart sensor was developed and successfully applied to the monitoring of the internal stress of the concrete core of a CFST column under impact loads. The smart sensor consists of a PVDF piezoelectric film sandwiched between two thin steel plates through epoxy. The protection not only prevents the PVDF film from impact damages but also ensures insulation and waterproofing. The smart sensors were embedded into the circular concrete-filled steel tube specimen during concrete pouring. The specimen was tested against impact loads, and testing data were collected. The time history of the stress obtained from the PVDF smart sensor revealed the evolution of core concrete internal stress under impact loads when compared with the impact force⁻time curve of the hammer. Nonlinear finite element simulations of the impact process were also carried out. The results of FEM simulations had good agreement with the test results. The results showed that the proposed PVDF piezoelectric smart sensors can effectively monitor the internal stress of concrete-filled steel tubular columns under impact loads.

7.
Sensors (Basel) ; 17(8)2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28829400

ABSTRACT

The filling of thin-walled steel tubes with quartz sand can help to prevent the premature buckling of the steel tube at a low cost. During an impact, the internal stress of the quartz sand-filled steel tube column is subjected to not only axial force but also lateral confining force, resulting in complicated internal stress. A suitable sensor for monitoring the internal stress of such a structure under an impact is important for structural health monitoring. In this paper, piezoceramic Smart Aggregates (SAs) are embedded into a quartz Sand-Filled Steel Tube Column (SFSTC) to monitor the internal structural stress during impacts. The piezoceramic smart aggregates are first calibrated by an impact hammer. Tests are conducted to study the feasibility of monitoring the internal stress of a structure. The results reflect that the calibration value of the piezoceramic smart aggregate sensitivity test is in good agreement with the theoretical value, and the output voltage value of the piezoceramic smart aggregate has a good linear relationship with external forces. Impact tests are conducted on the sand-filled steel tube with embedded piezoceramic smart aggregates. By analyzing the output signal of the piezoceramic smart aggregates, the internal stress state of the structure can be obtained. Experimental results demonstrated that, under the action of impact loads, the piezoceramic smart aggregates monitor the compressive stress at different locations in the steel tube, which verifies the feasibility of using piezoceramic smart aggregate to monitor the internal stress of a structure.

8.
Sensors (Basel) ; 17(8)2017 Aug 12.
Article in English | MEDLINE | ID: mdl-28805666

ABSTRACT

Cracks in oil and gas pipelines cause leakage which results in property damage, environmental pollution, and even personal injury or loss of lives. In this paper, an active-sensing approach was conducted to identify the crack damage in pipeline structure using a stress wave propagation approach with piezoceramic transducers. A pipeline segment instrumented with five distributed piezoceramic transducers was used as the testing specimen in this research. Four cracks were artificially cut on the specimen, and each crack had six damage cases corresponding to different crack depths. In this way, cracks at different locations with different damage degrees were simulated. In each damage case, one piezoceramic transducer was used as an actuator to generate a stress wave to propagate along the pipeline specimen, and the other piezoceramic transducers were used as sensors to detect the wave responses. To quantitatively evaluate the crack damage status, a wavelet packet-based damage index matrix was developed. Experimental results show that the proposed method can evaluate the crack severity and estimate the crack location in the pipeline structure based on the proposed damage index matrix. The sensitivity of the proposed method decreases with increasing distance between the crack and the mounted piezoceramic transducers.

9.
Chem Biol Interact ; 268: 111-118, 2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28284660

ABSTRACT

Locoism threatens the sustainable development of animal husbandry in areas around the world with intensified desertification, especially in the western United States, western China, Canada, and Mexico, among other countries. This study was conducted to discover potential serum biomarkers in locoweed-poisoned rabbits and lay a foundation for early diagnosis of locoism. We performed iTRAQ labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS), comparing locoweed-poisoned rabbits and healthy controls. A total of 78 differentially-expressed proteins (fold change > 1.5 or < 0.67) were identified in the locoweed-poisoned rabbits compared to healthy controls. We found that 57.70% of differentially-expressed proteins were functionally related, and through bioinformatics analysis, we were able to construct a network mainly in complement and coagulation cascades. Significant differences in thrombospondin 4 (THBS4), kininogen 1 (KNG1), hemoglobin (HBB), and complement factor I (CFI) between locoweed poisoned animals and controls were found (P < 0.05) and validated by western blotting. These results suggested that locoweed could damage neurocytes, lower immunity, and form thrombi in rabbits. Our study proposes potential biomarkers for locoism diagnosis and also provides a new experimental basis to understand the pathogenesis of locoism.


Subject(s)
Blood Proteins/analysis , Oxytropis/poisoning , Proteome/analysis , Animals , Biomarkers/blood , Female , Male , Proteomics , Rabbits , Swainsonine/pharmacology , alpha-Mannosidase/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL