Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Front Cell Infect Microbiol ; 14: 1378804, 2024.
Article in English | MEDLINE | ID: mdl-38736749

ABSTRACT

Introduction: Seasonal human coronavirus NL63 (HCoV-NL63) is a frequently encountered virus linked to mild upper respiratory infections. However, its potential to cause more severe or widespread disease remains an area of concern. This study aimed to investigate a rare localized epidemic of HCoV-NL63-induced respiratory infections among pediatric patients in Guilin, China, and to understand the viral subtype distribution and genetic characteristics. Methods: In this study, 83 pediatric patients hospitalized with acute respiratory infections and positive for HCoV-NL63 were enrolled. Molecular analysis was conducted to identify the viral subgenotypes and to assess genetic variations in the receptor-binding domain of the spiking protein. Results: Among the 83 HCoV-NL63-positive children, three subgenotypes were identified: C4, C3, and B. Notably, 21 cases exhibited a previously unreported subtype, C4. Analysis of the C4 subtype revealed a unique amino acid mutation (I507L) in the receptor-binding domain of the spiking protein, which was also observed in the previously reported C3 genotype. This mutation may suggest potential increases in viral transmissibility and pathogenicity. Discussion: The findings of this study highlight the rapid mutation dynamics of HCoV-NL63 and its potential for increased virulence and epidemic transmission. The presence of a unique mutation in the C4 subtype, shared with the C3 genotype, raises concerns about the virus's evolving nature and its potential public health implications. This research contributes valuable insights into the understanding of HCoV-NL63's epidemiology and pathogenesis, which is crucial for effective disease prevention and control strategies. Future studies are needed to further investigate the biological significance of the observed mutation and its potential impact on the virus's transmissibility and pathogenicity.


Subject(s)
Coronavirus Infections , Coronavirus NL63, Human , Epidemics , Genotype , Phylogeny , Respiratory Tract Infections , Humans , Coronavirus NL63, Human/genetics , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus Infections/transmission , Child , Female , Male , Child, Preschool , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Infant , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Seasons , Mutation , Adolescent
2.
Environ Res ; 252(Pt 2): 118904, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38614203

ABSTRACT

CH4 serves as an important greenhouse gas, yet limited knowledge is available in global and regional CH4 cycling, particularly in widely distributed karst terrain. In this study, we investigated an upland in Puding Karst Ecosystem Research Station, and explored CH4 concentration and/or flux in atmosphere, soil and cave using a closed static chamber method and an eddy covariance system. Meanwhile, we monitored atmospheric temperature, precipitation, temperature and wind velocity in the cave entrance. The results demonstrated that atmospheric CH4 and actual soil CH4 fluxes in the source area of eddy covariance system were -0.19 ± 8.64 nmols-1m-2 and -0.16 nmols-1m-2 respectively. The CH4 concentrations in Shawan Cave exhibited 10 âˆ¼ 100-fold lower than that of the external atmosphere. CH4 oxidation rate dominated by methane-oxidizing bacteria was 1.98 nmols-1m-2 in Shawan Cave when it combined with temperature difference between cave and external atmosphere. Therefore, CH4 sink in global karst subterranean spaces was estimated at 106.2 Tg CH4 yr-1. We supplemented an understanding of CH4 cycling paths and fluxes in karst terrain, as well as CH4 sinks in karst subterranean space. Further works require to establish a karst ecosystem observation network to conduct long-term integrated studies on CH4 fluxes regarding atmosphere, soils, plants and caves.

3.
Molecules ; 29(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542902

ABSTRACT

The extraction of rare earth elements (REEs) from phosphogypsum (PG) is of great significance for the effective utilization of rare earth resources and enhancing the resource value of PG waste residues. This study used Aspergillus niger (A. niger) fungal culture filtrate as a leaching agent to investigate the behavior of extracting REEs from PG through direct and indirect contact methods. According to the ICP-MS results, direct leaching at a temperature of 30 °C, shaking speed of 150 rpm, and a solid-liquid ratio of 2:1, achieved an extraction rate of 74% for REEs, with the main elements being yttrium (Y), lanthanum (La), cerium (Ce), and neodymium (Nd). Under the same conditions, the extraction rate of REEs from phosphogypsum using an A. niger culture filtrate was 63.3% higher than that using the simulated organic acid-mixed solution prepared with the main organic acid components in the A. niger leachate. Moreover, the morphological changes observed in A. niger before and after leaching further suggest the direct involvement of A. niger's metabolic process in the extraction of REEs. When compared to using organic acids, A. niger culture filtrate exhibits higher leaching efficiency for extracting REEs from PG. Additionally, using A. niger culture filtrate is a more environmentally friendly method with the potential for industrial-scale applications than using inorganic acids for the leaching of REEs from PG.


Subject(s)
Aspergillus niger , Metals, Rare Earth , Phosphorus , Lanthanum , Calcium Sulfate
4.
J Colloid Interface Sci ; 665: 554-563, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552572

ABSTRACT

The achievement of covalent organic frameworks (COFs) with high stability and exceptional proton conductivity is of tremendous practical importance and challenge. Given this, we hope to prepare the highly stable COFs carrying CN connectors and enhance their proton conductivity via a post-modification approach. Herein, one COF, TpTta, was successfully synthesized by employing 1,3,5-triformylphloroglucinol (Tp) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)-trianiline (Tta) as starting materials, which has a ß-ketoenamine structure bearing a large amount of -NH groups and intramolecular H-bonds. TpTta was then post-modified by inserting imidazole (Im) and histamine (His) molecules, yielding the corresponding COFs, Im@TpTta and His@TpTta, respectively. As a result, their proton conductivities were surveyed under changeable temperatures (30-100 °C) and relative humidities (68-98 %), revealing a degree of temperature and humidity dependence. Impressively, under identical conditions, the optimum proton conductivities of the two post-modified COFs are 1.14 × 10-2 (Im@TpTta) and 3.45 × 10-3 S/cm (His@TpTta), which are significantly greater than that of the pristine COF, TpTta (2.57 × 10-5 S/cm). Finally, their proton conduction mechanisms were hypothesized based on the computed activation energy values, water vapor adsorption values, and structural properties of these COFs. Additionally, the excellent electrochemical stability of the produced COFs was expressed, as well as the prospective application value.

5.
Toxicol Lett ; 393: 47-56, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242488

ABSTRACT

Trichloroethylene-induced hypersensitivity dermatitis (TIHD) is a delayed hypersensitivity response that is affected by genetic and environmental factors. Occupational exposure to trichloroethylene (TCE) enhances antigen presentation, leading to hypersensitivity in workers with the HLA-B* 13:01 allele. Several studies have observed the activation of herpesviruses, such as EpsteinBarr virus (EBV), in TIHD patients. However, the underlying mechanisms remain unclear. Toll-like receptors (TLRs) play a pivotal role in the pathogenesis of herpesvirus infection. This study aimed to explore whether TLRs serve as a shared mechanism for both herpesvirus and allergenic chemicals. In this study, HLA-B* 13:01-transfected Hmy2. A C1R cell model was constructed, and cells were treated with TCOH and EBV to explore the possible mechanisms. We established a mouse model of dermatitis and used a TLR4 agonist to verify the effect of herpesvirus on TIHD. The results showed that EBV and TCOH synergistically enhance antigen processing and presentation via the TLR2/NF-κB axis. Furthermore, TLR4 agonist further aggravated skin lesions and liver damage in TCE-sensitized mice through TLR4/NF-κB axis-mediated antigen processing and presentation. Together, this study indicates that viral infection further aggravates the inflammatory response in TIHD based on environment-gene interactions.


Subject(s)
Dermatitis , Herpesviridae , Hypersensitivity , Trichloroethylene , Humans , Mice , Animals , NF-kappa B , Trichloroethylene/toxicity , Antigen Presentation , Toll-Like Receptor 4/genetics , HLA-B Antigens/genetics
6.
J Infect ; 88(2): 158-166, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101522

ABSTRACT

The symptoms of children infected with SARS-CoV-2 are mainly asymptomatic, mild, moderate, and a few severe cases. To understand the immune response characteristics of children infected with SARS-COV-2 who do not develop severe cases, 82 children infected with the SARS-CoV-2 delta strain were recruited in this study. Our results showed that high levels of IgG, IgM, and neutralization antibodies appeared in children infected with SARS-CoV-2. SARS-CoV-2 induced upregulation of both pro-inflammatory factors including TNF-α and anti-inflammatory factors including IL-4 and IL-13 in the children, even IL-10. The expression of INF-α in infected children also showed a significant increase compared to healthy children. However, IL-6, one of the important inflammatory factors, did not show an increase in infected children. It is worth noting that a large number of chemokines reduced in the SARS-CoV-2-infected children. Subsequently, TCR Repertoire, TCRß bias, and preferential usage were analyzed on data of TCR next-generation sequencing from 8 SARS-CoV-2-infected children and 8 healthy controls. We found a significant decrease in TCR clonal diversity and a significant increase in TCR clonal expansion in SARS-CoV-2-infected children compared to healthy children. The most frequent V and J genes in SARS-CoV-2 children were TRBV28 and TRBJ2-1. The most frequently VßJ gene pairing in SARS-CoV-2 infected children was TRBV20-1-TRBJ2-1. The strong antiviral antibody levels, low expression of key pro-inflammatory factors, significant elevation of anti-inflammatory factors, and downregulation of many chemokines jointly determine that SARS-CoV-2-infected children rarely develop severe cases. Overall, our findings shed a light on the immune response of non-severe children infected with SARS-CoV-2.


Subject(s)
COVID-19 , Child , Humans , SARS-CoV-2 , Immunity, Cellular , Antibodies, Viral , Anti-Inflammatory Agents , Chemokines , Receptors, Antigen, T-Cell , Immunity, Humoral
7.
Plant Physiol Biochem ; 205: 108203, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38000235

ABSTRACT

Molybdenum application holds the potential to enhance agricultural productivity. However, the precise impact on soil microbial diversity and mineral nutrient availability remains uncertain. In this study, we collected rhizosphere soil samples from different growth stages of broad beans. By analyzing mineral element contents, soil phosphorus and zinc fractions, as well as fungal and bacterial diversity, we observed that Mo application resulted in a reduction of soil Citrate‒P and HCl‒P content. This reduction led to an increase in available P content at different stages. Moreover, Mo application elevated root P concentration, but concurrently impeded the translocation of P to the shoots. Mo application also decreased the soil Exc‒Zn (exchangeable Zn) content while increasing the Res‒Zn (residual Zn) content, ultimately causing a decrease in available Zn content at different stages. Consequently, the Zn concentration within broad beans correspondingly decreased. Mo application fostered an augmentation in fungal richness and Shannon indices at the branching and podding stages. The analysis of microbial co-occurrence networks indicated that Mo application bolstered positive connectivity among fungal taxa. Remarkably, Mo significantly increased the abundance of Chaetomium, Leucosporidium, and Thielavia fungi. Spearman correlation analysis demonstrated a significant positive correlation between fungal diversity and soil available P content, as well as a notable negative correlation with soil available Zn content. These findings suggest that Mo application may modify the availability of soil P and Zn by influencing fungal diversity in the rhizosphere of crop soil, ultimately impacting nutrient accumulation within the grains.


Subject(s)
Fabaceae , Vicia faba , Soil , Molybdenum/pharmacology , Rhizosphere , Soil Microbiology , Minerals , Nutrients
8.
J Chromatogr A ; 1710: 464404, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37769425

ABSTRACT

This paper presents a multiple headspace extraction (MHE) analysis technique to determine the water vapor transmission rate of cellulose-based papers. The water vapor passing through the sample in a closed headspace vial is determined by MHE-gas chromatography. The results show that the employed method offers good precision (the relative standard deviation < 3.49 %) and good accuracy. The method is rapid and accurate, and is promising for the determination of the water vapor transmission rate of cellulose-based papers in future studies.

9.
Anal Sci ; 39(12): 2049-2058, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37668882

ABSTRACT

Ethyl vanillin (EVA) is widely used as a flavor additive in foods, and sensitive monitoring of EVA is of great significance for food safety. In this paper, the biomass of gum arabic derived carbon (GAC) coated with lanthanum vanadate (LaV) was constructed for the EVA sensor based on the synergistic effects of the electrochemical catalytic ability of LaV, the enhanced electrical conductivity with the GAC coating and the oxygen-containing functional groups in LaV@GAC. The as-developed LaV@GAC sensor showed a remarkable linear range from 0.06 µM to 100 µM and a low detection limit (LOD) of 6.28 nM. The electrochemical oxidation of EVA is limited by a diffusion-controlled process involving 2 electrons and 2 protons. Moreover, the LaV@GAC sensor has good recoveries (94.5-103.05%) for the detection of EVA in real milk powder samples. The proposed LaV@GAC sensor has good repeatability, high stability, and great potential for sensitive detection of flavor additives in food.

10.
BMC Infect Dis ; 23(1): 467, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37442963

ABSTRACT

BACKGROUND: To investigate the impact of the coronavirus disease 2019 (COVID-19) outbreak on the prevalence of respiratory viruses among pediatric patients with acute respiratory infections in Xuzhou from 2015-2021. METHODS: Severe acute respiratory infection (SARI) cases in hospitalized children were collected from 2015-2021 in Xuzhou, China. Influenza virus(IFV), respiratory syncytial virus (RSV), human parainfluenza virus type 3(hPIV-3), human rhinovirus (hRV), human adenovirus(hAdV), human coronavirus(hCoV) were detected by real-time fluorescence polymerase chain reaction(RT-qPCR), and the results were statistically analyzed by SPSS 23.0 software. RESULTS: A total of 1663 samples with SARI were collected from 2015-2021, with a male-to-female ratio of 1.67:1 and a total virus detection rate of 38.5% (641/1663). The total detection rate of respiratory viruses decreased from 46.2% (2015-2019) to 36% (2020-2021) under the control measures for COVID-19 (P < 0.01). The three viruses with the highest detection rates changed from hRV, RSV, and hPIV-3 to hRV, RSV, and hCoV. The epidemic trend of hPIV-3 and hAdV was upside down before and after control measures(P < 0.01); however, the epidemic trend of RV and RSV had not changed from 2015 to 2021(P > 0.05). After the control measures, the detection rate of hPIV-3 decreased in all age groups, and the detection rate of hCoV increased in all except the 1 ~ 3 years old group. CONCLUSIONS: Implementing control measures for COVID-19 outbreak curbed the spread of respiratory viruses among children as a whole. However, the epidemic of RV and RSV was not affected by the COVID-19 control policy.


Subject(s)
COVID-19 , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Child , Humans , Male , Female , Infant , Child, Preschool , Pandemics , Watchful Waiting , COVID-19/epidemiology , Respiratory Tract Infections/epidemiology , China/epidemiology , Parainfluenza Virus 1, Human
11.
Viruses ; 15(5)2023 05 10.
Article in English | MEDLINE | ID: mdl-37243223

ABSTRACT

Viral myocarditis (VMC) is a common disease characterized by cardiac inflammation. AC-73, an inhibitor of CD147, disrupts the dimerization of CD147, which participates in the regulation of inflammation. To explore whether AC-73 could alleviate cardiac inflammation induced by CVB3, mice were injected intraperitoneally with AC-73 on the fourth day post-infection (dpi) and sacrificed on the seventh dpi. Pathological changes in the myocardium, T cell activation or differentiation, and expression of cytokines were analyzed using H&E staining, flow cytometry, fluorescence staining and multiplex immunoassay. The results showed that AC-73 alleviated cardiac pathological injury and downregulated the percentage of CD45+CD3+ T cells in the CVB3-infected mice. The administration of AC-73 reduced the percentage of activated CD4+ and CD8+ T cells (CD69+ and/or CD38+) in the spleen, while the percentage of CD4+ T cell subsets in the spleen was not changed in the CVB3-infected mice. In addition, the infiltration of activated T cells (CD69+) and macrophages (F4/80+) in the myocardium also decreased after the AC-73 treatment. The results also showed that AC-73 inhibited the release of many cytokines and chemokines in the plasma of the CVB3-infected mice. In conclusion, AC-73 mitigated CVB3-induced myocarditis by inhibiting the activation of T cells and the recruitment of immune cells to the heart. Thus, CD147 may be a therapeutic target for virus-induced cardiac inflammation.


Subject(s)
Coxsackievirus Infections , Myocarditis , Mice , Animals , CD8-Positive T-Lymphocytes/metabolism , Coxsackievirus Infections/metabolism , Cytokines/metabolism , Inflammation , Enterovirus B, Human/physiology , Mice, Inbred BALB C
12.
Microbiol Spectr ; 11(3): e0534022, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37074196

ABSTRACT

Tick-borne viruses (TBVs) have attracted increasingly global public health attention. In this study, the viral compositions of five tick species, Haemaphysalis flava, Rhipicephalus sanguineus, Dermacentor sinicus, Haemaphysalis longicornis, and Haemaphysalis campanulata, from hedgehogs and hares in Qingdao, China, were profiled via metagenomic sequencing. Thirty-six strains of 10 RNA viruses belonging to 4 viral families, including 3 viruses of Iflaviridae, 4 viruses of Phenuiviridae, 2 viruses of Nairoviridae, and 1 virus of Chuviridae, were identified in five tick species. Three novel viruses of two families, namely, Qingdao tick iflavirus (QDTIFV) of the family of Iflaviridae and Qingdao tick phlebovirus (QDTPV) and Qingdao tick uukuvirus (QDTUV) of the family of Phenuiviridae, were found in this study. This study shows that ticks from hares and hedgehogs in Qingdao harbored diverse viruses, including some that can cause emerging infectious diseases, such as Dabie bandavirus. Phylogenetic analysis revealed that these tick-borne viruses were genetically related to viral strains isolated previously in Japan. These findings shed new light on the cross-sea transmission of tick-borne viruses between China and Japan. IMPORTANCE Thirty-six strains of 10 RNA viruses belonging to 4 viral families, including 3 viruses of Iflaviridae, 4 viruses of Phenuiviridae, 2 viruses of Nairoviridae, and 1 virus of Chuviridae, were identified from five tick species in Qingdao, China. A diversity of tick-borne viruses from hares and hedgehogs in Qingdao was found in this study. Phylogenetic analysis showed that most of these TBVs were genetically related to Japanese strains. These findings indicate the possibility of the cross-sea transmission of TBVs between China and Japan.


Subject(s)
Hares , Ixodidae , RNA Viruses , Ticks , Viruses , Animals , Hedgehogs , Phylogeny , RNA Viruses/genetics
13.
Anal Chem ; 95(2): 1454-1460, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36538530

ABSTRACT

Organic photoelectrochemical transistor (OPECT) bioanalytics has recently appeared as a promising route for biological measurements, which has major implications in both next-generation photoelectrochemical (PEC) bioanalysis and futuristic biorelated implementations. Via biological dissociation of materials, bioetching is a useful technique for bio-manufacturing and bioanalysis. The intersection of these two domains is expected to be a possible way to achieve innovative OPECT bioanalytics. Herein, we validate such a possibility, which is exemplified by alkaline phosphatase (ALP)-mediated bioetching of a CoOOH/BiVO4 gate for a signal-on OPECT immunoassay of human immunoglobulin G (HIgG) as the model target. Specifically, target-dependent bioetching of the upper CoOOH layer could result into an enhanced electrolyte contact and light accessibility to BiVO4, leading to the modulated response of the polymeric poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel that could be monitored by the channel current. The introduced biosensor achieves sensitive detection of HIgG with high selectivity and sensitivity. This work features bioetching-enabled high-efficacy OPECT bioanalysis and is anticipated to serve as a generic protocol, considering the diverse bioetching routes.


Subject(s)
Alkaline Phosphatase , Biosensing Techniques , Humans , Alkaline Phosphatase/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Immunoassay/methods , Oxides
15.
Front Public Health ; 11: 1310293, 2023.
Article in English | MEDLINE | ID: mdl-38235154

ABSTRACT

Objective: This study aimed to study the molecular epidemiology and clinical characteristics of respiratory syncytial virus (RSV) infection from hospitalized children with ARTI in Bengbu. Methods: One hundred twenty-four nasopharyngeal swab specimens and clinical data from children with ARTI cases were collected in Bengbu, China, during winter 2021-2022. The samples were detected by qPCR of 13 respiratory viruses. Phylogenetic analysis was constructed using MEGA 7.0. All analyses were performed using SAS software, version 9.4. Results: In winter 2021-2022, URTI, NSCAP, SCAP, and bronchiolitis accounted for 41.03%, 27.35%, 17.09%, and 14.53% of hospitalized children in Bengbu, China. The detection rates of the top three were RSV (41.94%), ADV (5.65%), and FluB (5.65%) in hospitalized children through 13 virus detection. RSV is the main pathogen of hospitalized children under 2 years old. Forty-eight sequences of G protein of RSV were obtained through PCR amplification, including RSV-A 37 strains and RSV-B 11 strains. Phylogenetic analysis showed that all RSV-A and RSV-B were ON1 and BA9 genotypes, respectively. ON1 genotypes were further divided into two clades. The majority of ON1 strains formed a unique genetic clade with T113I, V131D, N178 G, and H258Q mutations. Furthermore, RSV infection was an independent risk factor for ventilator use (OR = 9.55, 95% CI 1.87-48.64). Conclusion: There was a high incidence of RSV among hospitalized children during winter 2021-2022 in Bengbu with ON1 and BA9 being the dominant strains. This study demonstrated the molecular epidemiological characteristics of RSV in children with respiratory infections in Bengbu, China.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Humans , Infant , Child, Hospitalized , Molecular Epidemiology , Phylogeny , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus Infections/epidemiology , China/epidemiology
16.
Biosensors (Basel) ; 12(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36140145

ABSTRACT

The determination of plant growth regulators is of great importance for the quality monitoring of crops. In this work, 4-bromophenoxyacetic acid (4-BPA), one of the phenoxyacetic acids, was detected via the electrochemical method for the first time. A CeO2-decorated electrochemical exfoliated graphene (eGr) composite (CeO2/eGr) was constructed as the sensor for sensitive detection of 4-BPA due to the synergistic effect of the excellent catalytic active sites of CeO2 and good electron transference of the eGr. The developed CeO2/eGr sensor displayed a good linearity in a wide range from 0.3 to 150 µmol/L and the lowest detection limit of 0.06 µmol/L for 4-BPA detection. Electrochemical oxidation of 4-BPA follows a mix-controlled process on the CeO2/eGr electrode, which involves 2e in the transference process. This developed CeO2/eGr sensor has excellent repeatability with a relative standard deviation (RSD) of 2.35% in 10 continuous measurements. Moreover, the practical application of the sensor for 4-BPA detection in apple juice has recoveries in the range of 90-108%. This proposed CeO2/eGr sensor has great potential for detecting plant growth regulators in the agricultural industry.


Subject(s)
Cerium , Graphite , Cerium/chemistry , Electrochemical Techniques/methods , Electrodes , Graphite/chemistry , Phenoxyacetates , Plant Growth Regulators
17.
J Med Virol ; 94(6): 2653-2661, 2022 06.
Article in English | MEDLINE | ID: mdl-34873729

ABSTRACT

As an alternative mechanism for cap-dependent (m7GpppN) translation, internal ribosome entry site (IRES)-dependent translation has been observed in the 5' untranslated regions (5' UTR) and coding regions of a number of viral and eukaryotic mRNAs. In this study, a series of 5' terminal truncated structural protein genes that were fused with GFP was used to screen for potential IRESs, and IRESs were identified using a bicistronic luciferase vector or GFP expression vector possessing a hairpin structure. Our results revealed that a putative IRES was located between nt 1982 and 2281 in the VP3 coding region of the human rhinovirus 16 (HRV16) genomes. We also demonstrated that effective IRES-initiated protein expression in vitro did not occur through splicing sites or cryptic promoters. We confirmed that thapsigargin (TG), an inducer of endoplasmic reticulum stress (ERS), facilitated increased IRES activity in a dose-dependent manner. Additionally, the secondary structure of the IRES was predicted online using the RNAfold web server.


Subject(s)
Internal Ribosome Entry Sites , Rhinovirus , 5' Untranslated Regions , Humans , Internal Ribosome Entry Sites/genetics , Protein Biosynthesis , Rhinovirus/genetics , Ribosomes/genetics , Ribosomes/metabolism
19.
China CDC Wkly ; 3(30): 637-644, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34594958

ABSTRACT

What is already known about this topic? Though coronavirus disease 2019 (COVID-19) has largely been controlled in China, several outbreaks of COVID-19 have occurred from importation of cases or of suspected virus-contaminated products. Though several outbreaks have been traced to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolated on the outer packaging of cold chain products, live virus has not been obtained. What is added by this report? In September 2020, two dock workers were detected as having asymptomatic SARS-CoV-2 infection using throat swabs during routine screening in Qingdao, China. Epidemiological information showed that the two dock workers were infected after contact with contaminated outer packaging, which was confirmed by genomic sequencing. Compared to the Wuhan reference strain, the sequences from the dock workers and the package materials differed by 12-14 nucleotides. Furthermore, infectious virus from the cold chain products was isolated by cell culture, and typical SARS-CoV-2 particles were observed under electron microscopy. What are the implications for public health practice? The international community should pay close attention to SARS-CoV-2 transmission mode through cold chain, build international cooperative efforts in response, share relevant data, and call on all countries to take effective prevention and control measures to prevent virus contamination in cold-chain food production, marine fishing and processing, transportation, and other operations.

20.
Arch Virol ; 166(12): 3373-3386, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34608523

ABSTRACT

Internal ribosome entry site (IRES)-dependent translation is a mechanism distinct from 5' cap-dependent translation. IRES elements are located mainly in the 5' untranslated regions (UTRs) of viral and eukaryotic mRNAs. However, IRESs are also found in the coding regions of some viral and eukaryotic genomes to initiate the translation of some functional truncated isoforms. Here, five putative IRES elements of human rhinovirus 16 (HRV16) were identified in the coding region of the nonstructural proteins P2 and P3 through fusion with green fluorescent protein (GFP) expression vectors and bicistronic vectors with a hairpin structure. These five putative IRESs were located at nucleotide positions 4286-4585, 5002-5126, 6245-6394, 6619-6718, and 6629-6778 in the HRV16 genome. The functionality of the five IRESs was confirmed by their ability to initiate GFP expression in vitro. This suggests that an alternative mechanism might be used to increase the efficiency of replication of HRV16.


Subject(s)
Internal Ribosome Entry Sites , Rhinovirus , 5' Untranslated Regions/genetics , Humans , Internal Ribosome Entry Sites/genetics , Protein Biosynthesis , Rhinovirus/genetics , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...