Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 253(Pt 3): 126903, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37714239

ABSTRACT

In recent years, the pursuit of high-performance nano-flexible electronic composites has led researchers to focus on nanocellulose-graphene composites. Nanocellulose has garnered widespread interest due to its exceptional properties and unique structure, such as renewability, biodegradability, and biocompatibility. However, nanocellulose materials are deficient in electrical conductivity, which limits their applications in flexible electronics. On the other hand, graphene boasts remarkable properties, including a high specific surface area, robust mechanical strength, and high electrical conductivity, making it a promising carbon-based nanomaterial. Consequently, research efforts have intensified in exploring the preparation of graphene-nanocellulose flexible electronic composites. Although there have been studies on the application of nanocellulose and graphene, there is still a lack of comprehensive information on the application of nanocellulose/graphene in flexible electronic composites. This review examines the recent developments in nanocellulose/graphene flexible electronic composites and their applications. In this review, the preparation of nanocellulose/graphene flexible electronic composites from three aspects: composite films, aerogels, and hydrogels are first introduced. Next, the recent applications of nanocellulose/graphene flexible electronic composites were summarized including sensors, supercapacitors, and electromagnetic shielding. Finally, the challenges and future directions in this emerging field was discussed.


Subject(s)
Graphite , Carbon , Electric Conductivity , Electronics , Hydrogels
3.
Nanomicro Lett ; 15(1): 98, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37038023

ABSTRACT

Multifunctional architecture with intriguing structural design is highly desired for realizing the promising performances in wearable sensors and flexible energy storage devices. Cellulose nanofiber (CNF) is employed for assisting in building conductive, hyperelastic, and ultralight Ti3C2Tx MXene hybrid aerogels with oriented tracheid-like texture. The biomimetic hybrid aerogels are constructed by a facile bidirectional freezing strategy with CNF, carbon nanotube (CNT), and MXene based on synergistic electrostatic interaction and hydrogen bonding. Entangled CNF and CNT "mortars" bonded with MXene "bricks" of the tracheid structure produce good interfacial binding, and superior mechanical strength (up to 80% compressibility and extraordinary fatigue resistance of 1000 cycles at 50% strain). Benefiting from the biomimetic texture, CNF/CNT/MXene aerogel shows ultralow density of 7.48 mg cm-3 and excellent electrical conductivity (~ 2400 S m-1). Used as pressure sensors, such aerogels exhibit appealing sensitivity performance with the linear sensitivity up to 817.3 kPa-1, which affords their application in monitoring body surface information and detecting human motion. Furthermore, the aerogels can also act as electrode materials of compressive solid-state supercapacitors that reveal satisfactory electrochemical performance (849.2 mF cm-2 at 0.8 mA cm-2) and superior long cycle compression performance (88% after 10,000 cycles at a compressive strain of 30%).

4.
Carbohydr Polym ; 305: 120567, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36737205

ABSTRACT

Hydrogels with prominent flexibility, versatility, and high sensitivity play an important role in the design and fabrication of wearable sensors. In particular, these flexible conductive hydrogels exhibit elastic modulus that is highly compatible with human skin, demonstrating the great potential for flexible sensing. However, the preparation of high-performance hydrogel-based sensors that can restrain extreme cold conditions is still challenging. Herein, a novel anti-freezing composite hydrogel with superior conductivity based on polyacrylamide (PAM), LiCl, and PEDOT:PSS coated cellulose nanofibrils (PAM/PEDOT:PSS/CNF) is constructed. The addition of CNF increased the hydrogen bonding sites of the molecular chains in the micro, thus improving the mechanical strength and the conductivity of the hydrogel in the macro. The hydrogels achieve a high tensile strength of 0.19 MPa, compressive strength of 0.92 MPa, and dissipation energy of 41.9 kJ/m3. Otherwise, LiCl increases the interactions between the colloidal phase and water molecules, endowing the hydrogels with excellent freezing tolerance. Specifically, the optimized hydrogel of 45 % LiCl exhibited stable mechanical properties at -40 °C. Finally, the composite hydrogel was used to assemble flexible sensors with high sensitivity of 10.3 MPa-1, which can detect a wide range of human movements and physiological activities.


Subject(s)
Cellulose , Wearable Electronic Devices , Humans , Electric Conductivity , Hydrogels
5.
ACS Appl Mater Interfaces ; 14(50): 56056-56064, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36507693

ABSTRACT

A flexible resistive-type polyaniline-based gas sensor was fabricated by simple dip-coating of graphene combined with in situ polymerization of aniline on a flexible waste mask substrate. The prepared polypropylene/graphene/polyaniline (PP/G/PANI) hybrid sensor demonstrated a fast response (114 s) and recovery time (23 s), ppb-level detection limit (100 ppb), high response value (250% toward 50 ppm NH3, which is over four times greater than that of the pristine PANI sensor), acceptable flexibility, excellent selectivity, and long-term stability at room temperature. The morphological and structural properties of the composite sensor materials were characterized by scanning electron microscopy and energy-dispersive spectroscopy characterization, and the surface chemistry of the hybrid sensors was analyzed by Fourier transform infrared spectroscopy. The excellent sensing performance was mainly ascribed to the larger specific surface area and efficient conducting paths of the porous PP/G/PANI network. Moreover, the PP/G/PANI hybrid gas sensor exhibited excellent sensing capability on volatile sulfur compounds contained in human breath, indicating that the hybrid sensor can be applied to breath analysis and kidney disease diagnosis.

6.
Carbohydr Polym ; 297: 120062, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36184156

ABSTRACT

Herein, a highly efficient and sustainable approach, namely HCl-catalyzed para-toluene sulfonic acid/Formic acid (p-TsOH/FA) hydrolysis was reported to produce surface functionalized cellulose nanocrystals (CNCs). The optimized CNCs showed a high yield (79.6 %), high crystallinity (70.6 %) and high thermal stability (maximal weight loss temperature around 350 °C). In addition, the as-prepared CNCs possess excellent ability to stabilize oil-water due to the introduction of functional formyl groups, which could be promising stabilizers for Pickering emulsions (PEs). At a fixed oil-water ratio (2:8, v:v), the CNCs with the concentration of 0.5 wt% to 2.0 wt% could stabilize peanut oil to make PEs, and the emulsion droplets were <5 µm in diameter. In addition, the stability of the PEs at different temperature, pH, ionic strength, and long storage time were studied. The results indicated that the obtained CNCs could be sustainable and superior stabilizers for PEs.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Peanut Oil , Sulfonic Acids , Toluene , Water/chemistry
7.
Nanoscale ; 14(40): 14902-14912, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36047909

ABSTRACT

Flexible and light weight electromagnetic interference (EMI) shielding materials with high electromagnetic shielding efficiency (SE) and excellent mechanical strength are highly demanded for wearable and portable electronics. In this work, for the first time, a freestanding and flexible cellulose nanofibril (CNF)/PEDOT:PSS/MXene (Ti3C2Tx) nanocomposite film with a ternary heterostructure was manufactured using a vacuum-assisted filtration process. The results show that compared with pure MXene films, the tensile strength of the optimized nanocomposite film increases from 8.88 MPa to 59.99 MPa, and the corresponding fracture strain increases from 0.87% to 4.60%. Intriguingly, the optimized nanocomposite film exhibited an impressive conductivity of 1903.2 S cm-1, which is among the highest values reported for MXene and cellulose-based nanocomposites. Owing to the superior conductivity and unique heterostructure, the nanocomposite film exhibits a high EMI SE value of 76.99 dB at a thickness of only 58.0 µm. Taking into account the robust mechanical properties and remarkable EMI shielding performance, the CNF/PEDOT:PSS/MXene nanocomposite film could be a prospective EMI shielding material for a variety of high-end applications.

8.
Comput Methods Programs Biomed ; 224: 107026, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35872384

ABSTRACT

BACKGROUND AND OBJECTIVE: Generative adversarial network (GAN) is able to learn from a set of training data and generate new data with the same characteristics as the training data. Based on the characteristics of GAN, this paper developed its capability as a tool of disease prognosis prediction, and proposed a prognostic model PregGAN based on conditional generative adversarial network (CGAN). METHODS: The idea of PregGAN is to generate the prognosis prediction results based on the clinical data of patients. PregGAN added the clinical data as conditions to the training process. Conditions were used as the input to the generator along with noises. The generator synthesized new samples using the noises vectors and the conditions. In order to solve the mode collapse problem during PregGAN training, Wasserstein distance and gradient penalty strategy were used to make the training process more stable. RESULTS: In the prognosis prediction experiments using the METABRIC breast cancer dataset, PregGAN achieved good results, with the average accurate (ACC) of 90.6% and the average AUC (area under curve) of 0.946. CONCLUSIONS: Experimental results show that PregGAN is a reliable prognosis predictive model for breast cancer. Due to the strong ability of probability distribution learning, PregGAN can also be used for the prognosis prediction of other diseases.


Subject(s)
Breast Neoplasms , Image Processing, Computer-Assisted , Breast Neoplasms/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted/methods , Prognosis
9.
Nanomicro Lett ; 14(1): 104, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35416525

ABSTRACT

Cellulose nanopaper has shown great potential in diverse fields including optoelectronic devices, food packaging, biomedical application, and so forth, owing to their various advantages such as good flexibility, tunable light transmittance, high thermal stability, low thermal expansion coefficient, and superior mechanical properties. Herein, recent progress on the fabrication and applications of cellulose nanopaper is summarized and discussed based on the analyses of the latest studies. We begin with a brief introduction of the three types of nanocellulose: cellulose nanocrystals, cellulose nanofibrils and bacterial cellulose, recapitulating their differences in preparation and properties. Then, the main preparation methods of cellulose nanopaper including filtration method and casting method as well as the newly developed technology are systematically elaborated and compared. Furthermore, the advanced applications of cellulose nanopaper including energy storage, electronic devices, water treatment, and high-performance packaging materials were highlighted. Finally, the prospects and ongoing challenges of cellulose nanopaper were summarized.

10.
Adv Mater ; 33(48): e2101368, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34561914

ABSTRACT

With the increasing demand for wearable electronics (such as smartwatch equipment, wearable health monitoring systems, and human-robot interface units), flexible energy storage systems with eco-friendly, low-cost, multifunctional characteristics, and high electrochemical performances are imperative to be constructed. Nanocellulose with sustainable natural abundance, superb properties, and unique structures has emerged as a promising nanomaterial, which shows significant potential for fabricating functional energy storage systems. This review is intended to provide novel perspectives on the combination of nanocellulose with other electrochemical materials to design and fabricate nanocellulose-based flexible composites for advanced energy storage devices. First, the unique structural characteristics and properties of nanocellulose are briefly introduced. Second, the structure-property-application relationships of these composites are addressed to optimize their performances from the perspective of processing technologies and micro/nano-interface structure. Next, the recent specific applications of nanocellulose-based composites, ranging from flexible lithium-ion batteries and electrochemical supercapacitors to emerging electrochemical energy storage devices, such as lithium-sulfur batteries, sodium-ion batteries, and zinc-ion batteries, are comprehensively discussed. Finally, the current challenges and future developments in nanocellulose-based composites for the next generation of flexible energy storage systems are proposed.

11.
Carbohydr Polym ; 270: 118372, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34364616

ABSTRACT

This work demonstrated a facile and sustainable approach to functionalize cellulose nanopaper (CNP) by impregnation of chitosan (CS) and the followed halogenation. It was found that the tensile strength of the functionalized CNP (CNP/CS-Cl) was enhanced by 38.3% and 512.6% at dry and wet conditions, respectively. Meanwhile, the total transmittance (at 550 nm) of CNP/CS-Cl was increased from 75% of pure CNP to 85%, with 35% decrease in optical haze. Moreover, the CNP/CS-Cl exhibited significant enhancement in barrier properties. Importantly, part of the amino groups on CS were transformed into N-halamines during the halogenation process, which endowed the CNP/CS-Cl with excellent antibacterial performance against both S. aureus and E. coli with 100% bacterial reduction after 10 min of contact. Thus, this work provides a simple and efficient approach to functionalize CNP with water resistance, high transparency, excellent antibacterial and barrier properties, which will expand the potential applications of CNP.


Subject(s)
Anti-Bacterial Agents/chemistry , Cellulose/chemistry , Chitosan/chemistry , Nanofibers/chemistry , Water/chemistry , Anti-Bacterial Agents/pharmacology , Cellulose/pharmacology , Chitosan/pharmacology , Escherichia coli/drug effects , Halogenation , Paper , Spectroscopy, Fourier Transform Infrared/methods , Staphylococcus aureus/drug effects , Tensile Strength
12.
Carbohydr Polym ; 267: 118220, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34119174

ABSTRACT

Developing green and simple methods for the preparation of cellulose nanofibrils (CNFs) is of great significance. Herein, a green deep eutectic solvent (DES) system based on choline chloride (ChCl) and citric acid (CA) is employed to pretreat cellulose fibers for the preparation of CNFs. The effect of the pretreatment temperature on the chemo-physical properties of the CNFs is comprehensively investigated. A high CNFs yield of up to 84.19% can be achieved under optimized conditions. The optimal CNFs show a narrow diameter distribution and length up to several microns, high crystallinity and thermal stability, as well as excellent dispersibility in water. Furthermore, semi-transparent and flexible cellulose nanopaper (CNP) was fabricated through a facile vacuum filtration process. The optimal CNP shows high tensile strength (175.15 MPa) and toughness (7.51 MJ/m3). Therefore, this work provides a sustainable and facile approach to fabricate CNFs and CNP, which can be potentially used for various high-tech applications.


Subject(s)
Cellulose/chemistry , Choline/chemistry , Citric Acid/chemistry , Nanofibers/chemistry , Solvents/chemistry , Green Chemistry Technology/methods , Optical Phenomena , Paper , Pressure , Temperature , Tensile Strength , Wood/chemistry
13.
ACS Appl Mater Interfaces ; 13(27): 32115-32125, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34185490

ABSTRACT

Cellulose nanopaper (CNP) has been considered as a promising material with great application potential in diverse fields. However, the hydrophilic nature of CNP significantly limits its practical application. In order to improve its water resistance, we demonstrate a facile approach to functionalize CNP by impregnating it with chitosan (CS), followed by in situ polymerization of polypyrrole (PPy). The results indicate that the obtained CNP/CS/PPy shows excellent water resistance with the wet tensile strength of up to 80 MPa, which is more than 10 times higher than that of the pure CNP. Intriguingly, new features (e.g., electrical conductivity, antibacterial activity, and so forth) are achieved at the same time. The functionalized CNP/CS/PPy shows a high conductivity of 6.5 S cm-1, which can be used for electromagnetic interference shielding applications with a high shielding performance of around 18 dB. In addition, the CNP/CS/PPy exhibits good antibacterial activity toward Staphylococcus aureus and Escherichia coli, with the bacterial reductions of 99.28 and 95.59%, respectively. Thus, this work provides a simple and versatile approach to functionalize CNP for achieving multifunctional properties.


Subject(s)
Cellulose/chemistry , Cellulose/pharmacology , Chitosan/chemistry , Nanostructures/chemistry , Paper , Polymers/chemistry , Pyrroles/chemistry , Water/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Electric Conductivity , Escherichia coli/drug effects , Staphylococcus aureus/drug effects
14.
Front Bioeng Biotechnol ; 9: 677963, 2021.
Article in English | MEDLINE | ID: mdl-33937224

ABSTRACT

As a kind of biomass waste, enzymatic hydrolysis residues (EHRs) are conventionally burned or just discarded, resulting in environmental pollution and low economic benefits. In this study, EHRs of corncob residues (CCR) were used to produce high lignin-containing cellulose nanofibrils (LCNFs) and lignin nanoparticles (LNPs) through a facile approach. The LCNFs and LNPs with controllable chemical compositions and properties were produced by tuning the enzymolysis time of CCR and the followed homogenization. The morphology, thermal stability, chemical and crystalline structure, and dispersibility of the resultant LCNFs and LNPs were further comprehensively investigated. This work not only promotes the production of lignocellulose-based nanomaterials but also provides a promising utilization pathway for EHRs.

15.
Carbohydr Polym ; 266: 118107, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34044925

ABSTRACT

In this work, a sustainable and highly efficient approach for preparing bifunctional cellulose nanocrystals (CNCs) was proposed through a mixed acid system of sulfuric acid and formic acid (FA). It was found that low-concentration (5-10 wt%) sulfuric acid can significantly improve the hydrolysis efficiency of FA (65-80 wt%), which enabled the highly efficient preparation of CNCs, i.e., the maximum yield of CNCs reached up to 70.65%. The obtained CNCs exhibited a rod-like shape with high crystallinity, and good dispersibility in both water and some organic phases. Moreover, the as-prepared CNCs exhibited high thermal stability, which is much higher than that of the traditionally sulfuric acid hydrolyzed ones. In addition, it was demonstrated that the bifunctional CNCs were able to stabilize various oils to form stable Pickering emulsion gels. Thus, this work provides a promising approach for sustainable preparation of bifunctional CNCs, which may find high-end applications in diverse fields.

16.
Curr Med Chem ; 28(40): 8319-8332, 2021.
Article in English | MEDLINE | ID: mdl-33845720

ABSTRACT

BACKGROUND: Bacterial cellulose (BC) and its derivatives are a rich source of renewable natural ingredients, which are of great significance for biomedical and medical applications but have not yet been fully exploited. BC is a high-purity, biocompatible, and versatile biomaterial that can be used alone or in combination with other ingredients such as polymers and nanoparticles to provide different structural organization and function. This review briefly introduces the research status of BC hydrogels, focusing on the preparation of BC-based composite hydrogels and their applications in the field of biomedicine, particularly the wound dressings, tissue engineering scaffolds, and drug delivery. METHODS: By reviewing the most recent literature on this subject, we summarized recent advances in the preparation of BC-based composite hydrogels and their advances in biomedical applications, including wound dressings, tissue engineering, and drug delivery. RESULTS: BC composite hydrogels have broadened the field of application of BC and developed a variety of BC-based biomaterials with excellent properties. BC-based hydrogels have good biocompatibility and broad application prospects in the biomedical field. CONCLUSION: BC-based composite hydrogels with the advantages of 3D structure, nontoxicity, high purity, and good biocompatibility, have great prospects in the development of sustainable and multifunctional biomaterials for biomedical applications.


Subject(s)
Cellulose , Hydrogels , Biocompatible Materials , Humans , Tissue Engineering , Tissue Scaffolds
17.
Carbohydr Polym ; 259: 117740, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33674000

ABSTRACT

The purpose of this review is to summarize and discuss the recent developments in exploring cellulose and its derivatives in the applications of oilfield chemicals for petroleum drilling and exploiting. We begin with a brief introduction of cellulose and its common water-soluble derivatives, such as the carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, and amphoteric cellulose. Afterwards, the applications of cellulose derivatives in different petroleum exploitation processes, such as drilling, cementing, and fracturing, are set out in detail. Finally, the application perspectives and challenges of cellulose derivatives for oilfield applications are presented. This work demonstrates that cellulose derivatives have wide application prospects in oilfield industry in the future.

19.
ChemSusChem ; 13(24): 6461-6476, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-32961026

ABSTRACT

γ-Valerolactone (GVL), derived from renewable lignocellulosic biomass, has been considered as a cost-competitive and green platform chemical. With the increasingly prominent environmental problems, a deep understanding of the preparation and transformation of GVL is highly needed. Based on the latest progress made with GVL, preparation and applications of GVL are summarized and discussed in this Review. In particular, the state-of-the-art in catalytic production of GVL is described based on the use of noble-metal and non-noble-metal catalysts. The application of GVL for the valorization of lignocellulose would improve the yield of target products such as sugar monomers and furfural. Thus, GVL can be produced from lignocellulose and simultaneously it can also be used for the valorization of lignocellulose, just as in the sustainable and renewable cycle, "the falling leaves returns to their roots". This Review is expected to provide valuable reference and new proposal for the further development and better utilization of GVL.

20.
ACS Appl Mater Interfaces ; 12(30): 34226-34234, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32673490

ABSTRACT

Over the past few years, wearable electronics and smart textiles have seen tremendous growth in both academia and industries. However, it is still a challenge to prepare robust, flexible, wearable, and multiresponsive textile electronics. A newly blooming two-dimensional (2D) transition-metal carbide/nitride (MXene) is regarded as an ideal active material to build multifunctional electronics due to its intriguing properties. Herein, a hydrophobic and multifunctional textile composite (Si-MAP) was prepared by decoration of conductive MXene nanosheets onto air-laid paper, followed by wrapping with poly(dimethylsiloxane) (PDMS). These obtained smart textiles exhibited excellent electronic/photonic/mechanical triresponsive properties: Si-MAPs could reach high equilibrium temperatures (104.9 and 118.7 °C) under quite low power illumination (1.25 W cm-2) and working voltage (4 V). The Si-MAP pressure sensor exhibited high sensitivity and rapid response time (30-40 ms), which can capture a wide range of human movements. Moreover, the thin PDMS layer not only rendered the textile composites hydrophobic but also improved the stability and adaptation for daily use. Remarkably, the hydrophobic Si-MAPs have maintained the advantages of breathability and washability, which make them suitable for wearing. Thus, this smart Si-MAP textile provides a reference for the study of the next generation of light, portable, and wearable textile-based electronic devices.


Subject(s)
Movement , Textiles , Titanium/chemistry , Wearable Electronic Devices , Dimethylpolysiloxanes/chemistry , Humans , Nanostructures/chemistry , Thermal Conductivity
SELECTION OF CITATIONS
SEARCH DETAIL
...