Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 12(23): 11883-11897, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34738612

ABSTRACT

Inflammatory bowel disease (IBD) is a non-specific, chronic inflammatory disease of the intestine. The precise etiology and mechanism underlying the pathogenesis of IBD have not been elucidated. In this study, we investigated the mechanisms through which the Tricholoma matsutake-derived peptide, WFNNAGP, exerts protective effects on the inflammatory response and oxidative stress in a dextran sodium sulfate (DSS)-induced IBD mouse model. WFNNAGP significantly attenuated colitis symptoms in mice, including weight loss, diarrhea, shortened colon, bloody stools, and histopathological changes. WFNNAGP significantly ameliorated the DSS-induced oxidative damage, showing scavenging activity against hydroxyl and DPPH radicals (23.67 ± 4.11% and 34.53 ± 2.45%), increased SOD activity (191.48 ± 4.35 U per mg prot), and decreased MDA activity (1.61 ± 0.24 nmol per mg prot). In addition, WFNNAGP improved the inflammatory response by inhibiting MPO and pro-inflammatory cytokine expression and protected the barrier function by promoting the expression of occludin and ZO-1 in the colon. Western blotting showed that WFNNAGP reduced the inflammatory response by downregulating NF-κB expression and inhibiting the formation and activation of NLRP3 and caspase-1. Thus, WFNNAGP may reduce colonic inflammation in mice by enhancing oxidative defense systems and barrier function and may be a promising candidate for IBD intervention.


Subject(s)
Agaricales/chemistry , Biological Products/pharmacology , Colitis/metabolism , Oligopeptides/pharmacology , Oxidative Stress/drug effects , Animals , Colitis/chemically induced , Cytokines/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Male , Mice
2.
Foods ; 10(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34828964

ABSTRACT

Tricholoma matsutake is an edible fungus that contains various bioactive substances, some of them with immunostimulatory properties. Presently, there is limited knowledge about the functional components of T. matsutake. Our aim was to evaluate the protective effects and molecular mechanisms of two T. matsutake-derived peptides, SDLKHFPF and SDIKHFPF, on lipopolysaccharide (LPS)-induced mitochondrial dysfunction and inflammation in RAW264.7 macrophages. Tricholoma matsutake peptides significantly ameliorated the production of inflammatory cytokines and inhibited the expression of COX-2, iNOS, IKKß, p-IκB-α, and p-NF-κB. Immunofluorescence assays confirmed the inhibitory effect of T. matsutake peptides on NF-κB/p65 nuclear translocation. Furthermore, the treatment with T. matsutake peptides prevented the accumulation of reactive oxygen species, increased the Bcl-2/Bax ratio, reversed the loss of mitochondrial membrane potential, and rescued abnormalities in cellular energy metabolism. These findings indicate that T. matsutake peptides can effectively inhibit the activation of NF-κB/COX-2 and may confer an overall protective effect against LPS-induced cell damage.

3.
J Agric Food Chem ; 69(19): 5536-5546, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33955220

ABSTRACT

Intestinal barrier dysfunction and inflammatory cytokine secretion play crucial roles in inflammatory bowel disease (IBD). Herein, we investigated the protective effects of Tricholoma matsutake-derived peptides SDIKHFPF and SDLKHFPF against dextran sulfate sodium-induced colitis. Both peptides alleviated colitis signs, including diarrhea, weight loss, bloody stools, colon shortening, and histopathological changes, while reducing mucus destruction, goblet cell exhaustion, and intestinal permeability. SDIKHFPF and SDLKHFPF protected the barrier function by promoting the expression of tight junction (TJ) zonula occludens-1 and occludin within the colon, as well as attenuating colonic inflammation through myeloperoxidase and pro-inflammatory cytokine suppression. Western blotting indicated that the peptides suppressed myosin light chain kinase (MLCK) and nuclear factor kappa B (NF-κB) levels, inhibiting MLC phosphorylation. SDLKHFPF was more potent than SDIKHFPF. These findings suggest that peptide SDLKHFPF mitigates colitis by regulating TJ protein expression and pro-inflammatory cytokine production via NF-κB/MLCK/p-MLC signaling, improving the barrier function.


Subject(s)
Colitis , Tricholoma , Agaricales , Animals , Caco-2 Cells , Colitis/chemically induced , Colitis/drug therapy , Colitis/genetics , Dextran Sulfate/toxicity , Disease Models, Animal , Humans , Intestinal Mucosa , Mice , Mice, Inbred C57BL , Tight Junctions
4.
Foods ; 10(3)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806370

ABSTRACT

Headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) was used to analyze the changes to volatile compounds in fried Tricholoma matsutake Singer under different heating temperatures and times. A total of 40 signals that corresponded to 24 compounds were identified through this approach. Differences in volatile compounds of T. matsutake samples were shown in topographic plots and fingerprints. The heating temperatures were more important than the heating times in affecting the volatile compounds. Moreover, changes to the main volatile compounds in T. matsutake under different processing conditions were based on the thermal decomposition and a series of chemical reactions of C8 compounds. Principal component analysis (PCA) results showed that samples under different processing conditions could be effectively distinguished. Hence, the combination of HS-GC-IMS and PCA can identify and classify the volatile compounds of T. matsutake quickly and sensitively. This study provides a new supplementary analytical method for the rapid identification of T. matsutake. The above results can provide a theoretical basis for the quality control and change mechanism of flavor in the processing of traditional edible fungi products.

5.
Foods ; 10(3)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804109

ABSTRACT

An insight using molecular sensory science approaches to the contributions and variations of the key odorants in shiitake mushrooms is revealed in this study. Odorants were extracted by headspace solid phase microextraction (HS-SPME) and direct solvent extraction combined with solvent-assisted flavor evaporation (DSE-SAFE) in fresh and hot-air-dried shiitake mushrooms. Among them, 18 and 22 predominant odorants were determined by detection frequency analysis (DFA) and aroma extract dilution analysis (AEDA) combined with gas chromatography-olfactometry (GC-O) in the fresh and dried samples, respectively. The contributions of these predominant odorants in the food matrix were determined by quantification and odor activity values (OAVs) with aroma recombination verification. There were 13 and 14 odorants identified as key contributing odorants to overall aroma, respectively. 1-Octen-3-ol and 1-octen-3-one were the most key contributing odorants in the fresh samples in contributing mushroom-like odor. After hot-air-drying, the OAV and concentrations on dry basis of the key contributing odorants changed, due to oxidation, degradation, caramelization and Maillard reactions of fatty acids, polysaccharides and amino acids. 1-Octen-3-ol was reduced most significantly and degraded to 1-hydroxy-3-octanone, while phenylethyl alcohol increased the most and was formed by phenylalanine. In hot-air-dried samples, lenthionine became the most important contributor and samples were characterized by a sulfury odor. Overall contributions and variations of odorants to the aroma of shiitake mushrooms were revealed at the molecular level.

6.
Food Chem ; 353: 129452, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33714115

ABSTRACT

This study aimed to investigate the protective effects of a < 3 kDa Tricholoma matsutake Singer peptide (TMWP) on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophages. The results showed that TMWP significantly upregulated superoxide dismutase (SOD) activity and reduced reactive oxygen species (ROS) generation in RAW264.7 macrophages. Western blotting and immunofluorescence analysis indicated that TMWP inhibited the activation of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, thereby reducing the secretion of IL-1ß and IL-6 and the expression of TNF-α, COX-2, and iNOS. Additionally, TMWP improved mitochondrial respiration in LPS-stressed macrophages, counteracting the harmful effects of LPS treatment on mitochondrial function. Three peptides (SDIKHFPF, SDLKHFPF, and WFNNAGP) with the highest predicted scores for potential anti-inflammatory activity were identified using nano-HPLC-MS/MS. These data indicated that T. matsutake peptides could be an attractive natural ingredient for developing novel functional foods.


Subject(s)
Agaricales/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Fungal Proteins/chemistry , Fungal Proteins/pharmacology , Inflammation/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Fungal Proteins/immunology , Lipopolysaccharides/toxicity , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Peptides/chemistry , Peptides/immunology , Peptides/pharmacology , Protective Agents/chemistry , Protective Agents/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...