Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1265435, 2023.
Article in English | MEDLINE | ID: mdl-37965558

ABSTRACT

White birch (Betula platyphylla Suk.) is a typical pioneer tree species that is important in forest restoration in northern China, Japan, and Korea. In the present study, 37 isolates were obtained from B. platyphylla rhizosphere soils in Heilongjiang Province; they were identified as T. pleuroticola (3 isolates), T. virens (2 isolates), T. hamatum (8 isolates), T. atroviride (21 isolates, dominant species) and T. asperelloides (3 isolates). Stress tolerance tests (salt, alkali, and nutritional stress that simulated saline alkali or barren soil) and confrontation assays (with four pathogens) were performed to determine which isolates had good biocontrol ability in barren soil; the results show that T. atroviride was outstanding. Then, in order to determine the effect of T. atroviride on plants and soil, Gynura cusimbua seeds were sown and treated with a T. atroviride spore suspension, as was unsown soil. The seedlings treated using T. atroviride had significantly greater height, stem diameter, soluble protein content, soluble sugar content, and malonaldehyde (MDA) content and their catalase (CAT) activity was also significantly increased. In addition, when the plants were inoculated with Alternaria alternata, the plants treated using T. atroviride had stronger CAT activity, significantly higher soluble protein content and soluble sugar content, and significantly lower MDA content, which indicates stronger resistance and less injury caused by the pathogen. In addition, T. atroviride not only increased the content of available nitrogen and available phosphorus in the soil, but also promoted G. cusimbua seedlings' absorption of available nitrogen and available phosphorus. Thus, the characteristics of T. atroviride may make it the main factor that helps B. platyphylla colonise cut-over lands. T. atroviride, a promising biocontrol candidate, can be used in agriculture and forestry.

2.
Curr Issues Mol Biol ; 45(2): 1570-1586, 2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36826046

ABSTRACT

ATP-binding cassette (ABC) transporters are involved in transporting multiple substrates, such as toxins, and may be important for the survival of Trichoderma when encountering biotic toxins. In this study, genome searching revealed that there are 44 ABC transporters encoded in the genome of Trichoderma asperellum. These ABC transporters were divided into six types based on three-dimensional (3D) structure prediction, of which four, represented by 39 ABCs, are involved in transport and the remaining two, represented by 5 ABCs, are involved in regulating translation. The characteristics of nucleotide-binding domain (NBD) are important in the identification of ABC proteins. Even though the 3D structures of the 79 NBDs in the 44 ABCs are similar, multiple sequence alignment showed they can be divided into three classes. In total, 794 motifs were found in the promoter regions of the 44 ABC genes, of which 541 were cis-regulators related to stress responses. To characterize how their ABCs respond when T. asperellum interact with fungi or plants, T. asperellum was cultivated in either minimal media (MM) control, C-hungry, N-hungry, or poplar medium (PdPap) to simulate normal conditions, competition with pathogens, interaction with pathogens, and interaction with plants, respectively. The results show that 17 of 39 transport ABCs are highly expressed in at least one condition, whereas four of the five translation-regulating ABCs are highly expressed in at least one condition. Of these 21 highly expressed ABCs, 6 were chosen for RT-qPCR expression under the toxin stress of phytopathogen Alternaria alternata, and the results show ABC01, ABC04, ABC05, and ABC31 were highly expressed and may be involved in pathogen interaction and detoxifying toxins from A. alternata.

3.
Plant Physiol ; 191(2): 1272-1287, 2023 02 12.
Article in English | MEDLINE | ID: mdl-36437699

ABSTRACT

Increasing planting density is one of the most effective ways to improve crop yield. However, one major factor that limits crop planting density is the weakened immunity of plants to pathogens and insects caused by dim light (DL) under shade conditions. The molecular mechanism underlying how DL compromises plant immunity remains unclear. Here, we report that DL reduces rice (Oryza sativa) resistance against brown planthopper (BPH; Nilaparvata lugens) by elevating ethylene (ET) biosynthesis and signaling in a Phytochrome B (OsPHYB)-dependent manner. The DL-reduced BPH resistance is relieved in osphyB mutants, but aggravated in OsPHYB overexpressing plants. Further, we found that DL reduces the nuclear accumulation of OsphyB, thus alleviating Phytochrome Interacting Factor Like14 (OsPIL14) degradation, consequently leading to the up-regulation of 1-Aminocyclopropane-1-Carboxylate Oxidase1 (OsACO1) and an increase in ET levels. In addition, we found that nuclear OsphyB stabilizes Ethylene Insensitive Like2 (OsEIL2) by competitively interacting with EIN3 Binding F-Box Protein (OsEBF1) to enhance ET signaling in rice, which contrasts with previous findings that phyB blocks ET signaling by facilitating Ethylene Insensitive3 (EIN3) degradation in other plant species. Thus, enhanced ET biosynthesis and signaling reduces BPH resistance under DL conditions. Our findings provide insights into the molecular mechanism of the light-regulated ET pathway and host-insect interactions and potential strategies for sustainable insect management.


Subject(s)
Ethylenes , Hemiptera , Oryza , Phytochrome B , Animals , Ethylenes/metabolism , Hemiptera/metabolism , Oryza/metabolism , Phytochrome B/genetics , Phytochrome B/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...