Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899512

ABSTRACT

Despite recent advances in treatment, non-small cell lung cancer (NSCLC) continues to have a high mortality rate. Currently, NSCLC pathogenesis requires further investigation, and therapeutic drugs are still under development. Homologous recombination repair (HRR) repairs severe DNA double-strand breaks. Homologous recombination repair deficiency (HRD) occurs when HRR is impaired and causes irreparable double-strand DNA damage, leading to genomic instability and increasing the risk of cancer development. Poly(ADP-ribose) polymerase (PARP) inhibitors can effectively treat HRD-positive tumors. Extracellular heat shock protein 90α (eHSP90α) is highly expressed in hypoxic environments and inhibits apoptosis, thereby increasing cellular tolerance. Here, we investigated the relationship between eHSP90α and HRR in NSCLC. DNA damage models were established in NSCLC cell lines (A549 and H1299). The activation of DNA damage and HRR markers, apoptosis, proliferation, and migration were investigated. In vivo tumor models were established using BALB/c nude mice and A549 cells. We found that human recombinant HSP90α stimulation further activated HRR and reduced DNA damage extent; however, eHSP90α monoclonal antibody, 1G6-D7, effectively inhibited HRR. HRR inhibition and increased apoptosis were observed after LRP1 knockdown; this effect could not be reversed with hrHSP90α addition. The combined use of 1G6-D7 and olaparib caused significant apoptosis and HRR inhibition in vitro and demonstrated promising anti-tumor effects in vivo. Extracellular HSP90α may be involved in HRR in NSCLC through LRP1. The combined use of 1G6-D7 and PARP inhibitors may exert anti-tumor effects by inhibiting DNA repair and further inducing apoptosis of NSCLC cells.

2.
Ecotoxicol Environ Saf ; 277: 116357, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677073

ABSTRACT

Polystyrene microplastics (PS-MPs) are new types of environmental pollutant that have garnered significant attention in recent years since they were found to cause damage to the human respiratory system when they are inhaled. The pulmonary fibrosis is one of the serious consequences of PS-MPs inhalation. However, the impact and underlying mechanisms of PS-MPs on pulmonary fibrosis are not clear. In this study, we studied the potential lung toxicity and PS-MPs-developed pulmonary fibrosis by long-term intranasal inhalation of PS-MPs. The results showed that after exposing to the PS-MPs, the lungs of model mouse had different levels of damage and fibrosis. Meanwhile, exposing to the PS-MPs resulted in a markedly decrease in glutathione (GSH), an increase in malondialdehyde (MDA), and iron overload in the lung tissue of mice and alveolar epithelial cells (AECs). These findings suggested the occurrence of PS-MP-induced ferroptosis. Inhibitor of ferroptosis (Fer-1) had alleviated the PS-MPs-induced ferroptosis. Mechanically, PS-MPs triggered cell ferroptosis and promoted the development of pulmonary fibrosis via activating the cGAS/STING signaling pathway. Inhibition of cGAS/STING with G150/H151 attenuated pulmonary fibrosis after PS-MPs exposure. Together, these data provided novel mechanistic insights of PS-MPs-induced pulmonary fibrosis and a potential therapeutic paradigm.


Subject(s)
Alveolar Epithelial Cells , Ferroptosis , Membrane Proteins , Microplastics , Polystyrenes , Pulmonary Fibrosis , Signal Transduction , Ferroptosis/drug effects , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Polystyrenes/toxicity , Mice , Signal Transduction/drug effects , Microplastics/toxicity , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Membrane Proteins/metabolism , Male , Mice, Inbred C57BL
3.
Onco Targets Ther ; 16: 913-922, 2023.
Article in English | MEDLINE | ID: mdl-38021444

ABSTRACT

Objective: GW4869 is an exosomal inhibitor. It is necessary to delay the occurrence of gefitinib resistance during non-small-cell lung cancer (NSCLC) treatment. This study aimed to investigate the anti-tumor effects of GW4869 on epithelial-mesenchymal transition (EMT) and expression of extracellular heat shock protein 90α (eHSP90α) that contributes to acquired resisitance. Our study provides a new sight into the treatment of EGFR-mutated NSCLC. Materials and Methods: We performed western blotting to detect levels of EMT and eHSP90α. Wound healing and transwell assays were performed to evaluate the behavioral dynamics of EMT. A nude mouse model of HCC827 was established in vivo. Results: GW4869 inhibited the expression of eHSP90α, EMT, invasion and migration abilities of HCC827 and PC9. GW4869 enhanced sensitivity to gefitinib in BALB/c nude mice bearing tumors of HCC827. Conclusion: These studies suggest that GW4869 can inhibit EMT and extracellular HSP90α, providing new strategies for enhancing gefitinib sensitivity in NSCLC.

4.
Int Immunopharmacol ; 117: 109985, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36893517

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal disease,characterized by an excessive accumulation of extracellular matrix (ECM) proteins in response to chronic lung injury. Current evidence suggests that metabolic reprogramming is always accompanied by myofibroblast activation in IPFof whichthe underlying mechanisms remain unclear. Ring finger protein 130 (RNF130), was demonstrated involved in multiple diseases. However, whether RNF130 plays a critical role in the pathogenesis of IPF needs to be clarified. METHODS: We first investigated the expression of RNF130 in pulmonary fibrosis in vivo and in vitro. We then observed the effect and explored the molecular mechanism of RNF130 on the transition of fibroblast to myofibroblast and aerobic glycolysis. Further, we assessed the effects of adeno-associated virus (AAV)-induced RNF130 overexpression in the pulmonary fibrosis model, conducting pulmonary function, assessment of collagen depositionusing the hydroxyproline assay, and biochemical and histopathological analyses. RESULTS: We found that RNF130 was down-regulated in lung tissues of mice with bleomycin-induced pulmonary fibrosis and lung fibroblasts treated with transforming growth factor-ß1 (TGF-ß1). Then we demonstrated that RNF130 inhibitedthe transition of fibroblast to myofibroblast by suppressing aerobic glycolysis. Mechanistically, we revealed that RNF130 promotedc-myc ubiquitination and degradation, while c-myc overexpression reverses the inhibitory effects of RNF130. Importantly, pulmonary function, collagen deposition and fibroblast differentiation were significantly alleviated in adeno-associated virus serotype (AAV)6-RNF130 treated mice, which further validated the contribution of RNF130/c-myc signaling axis in pulmonary fibrosis pathological process. CONCLUSIONS: In summary, RNF130 participates in the pathogenesis of pulmonary fibrosis by inhibiting the transition of fibroblast to myofibroblast and aerobic glycolysis through promoting c-myc ubiquitination and degradation. Targeting RNF130-c-myc axismightrepresent a promising strategy to alleviate the progression of IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Proto-Oncogene Proteins c-myc , Animals , Humans , Mice , Bleomycin/adverse effects , Collagen/metabolism , Fibroblasts , Glycolysis , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Mice, Inbred C57BL , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...