Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(15): 19152-19162, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37022796

ABSTRACT

High-performance artificial synaptic devices with rich functions are highly desired for the development of an advanced brain-like neuromorphic system. Here, we prepare synaptic devices based on a CVD-grown WSe2 flake, which has an unusual morphology of nested triangles. The WSe2 transistor exhibits robust synaptic behaviors such as excitatory postsynaptic current, paired-pulse facilitation, short-time plasticity, and long-time plasticity. Furthermore, due to its high sensitivity to light illumination, the WSe2 transistor exhibits excellent light-dosage-dependent and light wavelength-dependent plasticity, which endow the synaptic device with more intelligent learning and memory functions. In addition, WSe2 optoelectronic synapses can mimic "learning experience" behavior and associative learning behavior like the brain. An artificial neural network is simulated for pattern recognition of hand-written digital images in the MNIST data set and the best recognition accuracy could reach 92.9% based on weight updating training of our WSe2 device. Detailed surface potential analysis and PL characterization reveal that the intrinsic defects generated in growth are dominantly responsible for the controllable synaptic plasticity. Our work suggests that the CVD-grown WSe2 flake with intrinsic defects capable of robust trapping/de-trapping charges holds great application prospects in future high-performance neuromorphic computation.

2.
Opt Express ; 28(21): 31436-31445, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33115116

ABSTRACT

We have grown VO2 films and combined with terahertz metamaterials to manipulate the memory effect during the insulator-to-metal transition. The temperature-dependent resonant frequency of hybrid structure shows a thermal hysteresis accompanied with frequency shift and bandwidth variation due to the presence of a VO2 dielectric layer. This frequency memory effect significantly depends on the metallic micro-structure. Further theoretical calculation demonstrates this phenomenon mainly originates from the different coupling strength between VO2 and metallic structures. Our findings could facilitate the application of VO2 films in the smart window and dynamical terahertz modulators.

3.
Adv Mater ; 32(7): e1905764, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31850652

ABSTRACT

Neuromorphic computing consisting of artificial synapses and neural network algorithms provides a promising approach for overcoming the inherent limitations of current computing architecture. Developments in electronic devices that can accurately mimic the synaptic plasticity of biological synapses, have promoted the research boom of neuromorphic computing. It is reported that robust ferroelectric tunnel junctions can be employed to design high-performance electronic synapses. These devices show an excellent memristor function with many reproducible states (≈200) through gradual ferroelectric domain switching. Both short- and long-term plasticity can be emulated by finely tuning the applied pulse parameters in the electronic synapse. The analog conductance switching exhibits high linearity and symmetry with small switching variations. A simulated artificial neural network with supervised learning built from these synaptic devices exhibited high classification accuracy (96.4%) for the Mixed National Institute of Standards and Technology (MNIST) handwritten recognition data set.

4.
Adv Mater ; 31(19): e1900379, 2019 May.
Article in English | MEDLINE | ID: mdl-30924206

ABSTRACT

Hardware implementation of artificial synaptic devices that emulate the functions of biological synapses is inspired by the biological neuromorphic system and has drawn considerable interest. Here, a three-terminal ferrite synaptic device based on a topotactic phase transition between crystalline phases is presented. The electrolyte-gating-controlled topotactic phase transformation between brownmillerite SrFeO2.5 and perovskite SrFeO3- δ is confirmed from the examination of the crystal and electronic structure. A synaptic transistor with electrolyte-gated ferrite films by harnessing gate-controllable multilevel conduction states, which originate from many distinct oxygen-deficient perovskite structures of SrFeOx induced by topotactic phase transformation, is successfully constructed. This three-terminal artificial synapse can mimic important synaptic functions, such as synaptic plasticity and spike-timing-dependent plasticity. Simulations of a neural network consisting of ferrite synaptic transistors indicate that the system offers high classification accuracy. These results provide insight into the potential application of advanced topotactic phase transformation materials for designing artificial synapses with high performance.

5.
Nanoscale Res Lett ; 14(1): 17, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30627821

ABSTRACT

SnSe2 field-effect transistor was fabricated based on exfoliated few-layered SnSe2 flake, and its electrical and photoelectric properties have been investigated in detail. With the help of a drop of de-ionized (DI) water, the SnSe2 FET can achieve an on/off ratio as high as ~ 104 within 1 V bias, which is ever extremely difficult for SnSe2 due to its ultrahigh carrier density (1018/cm3). Moreover, the subthreshold swing and mobility are both improved to ∼ 62 mV/decade and ~ 127 cm2 V-1 s-1 at 300 K, which results from the efficient screening by the liquid dielectric gate. Interestingly, the SnSe2 FET exhibits a gate bias-dependent photoconductivity, in which a competition between the carrier concentration and the mobility under illumination plays a key role in determining the polarity of photoconductivity.

6.
Adv Mater ; : e1801548, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29974526

ABSTRACT

Considering that the human brain uses ≈1015 synapses to operate, the development of effective artificial synapses is essential to build brain-inspired computing systems. In biological synapses, the voltage-gated ion channels are very important for regulating the action-potential firing. Here, an electrolyte-gated transistor using WO3 with a unique tunnel structure, which can emulate the ionic modulation process of biological synapses, is proposed. The transistor successfully realizes synaptic functions of both short-term and long-term plasticity. Short-term plasticity is mimicked with the help of electrolyte ion dynamics under low electrical bias, whereas the long-term plasticity is realized using proton insertion in WO3 under high electrical bias. This is a new working approach to control the transition from short-term memory to long-term memory using different gate voltage amplitude for artificial synapses. Other essential synaptic behaviors, such as paired pulse facilitation, the depression and potentiation of synaptic weight, as well as spike-timing-dependent plasticity are also implemented in this artificial synapse. These results provide a new recipe for designing synaptic electrolyte-gated transistors through the electrostatic and electrochemical effects.

7.
Chem Commun (Camb) ; 53(48): 6397-6400, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28504286

ABSTRACT

A new catalytic difluorohydration of ß-alkynyl ketones using NFSI as the fluorinating reagent has been established, diastereoselectively furnishing a range of structurally diverse difluoride 1,5-dicarbonyl products through C(sp3)-H fluorination. Notably, the sterically encumbered t-butyl functionality located at the α-position of the carbonyl group of substrates 1 showed excellent diastereoselectivity (up to >99 : 1 dr). The reaction enabled multiple bond-forming events including two C(sp3)-F formation through Ag-catalysis to provide a highly efficient and practical method toward difluoride 1,5-dicarbonyls, some of which were successfully converted into difluorinated isoquinolines.

8.
ACS Appl Mater Interfaces ; 8(50): 34590-34597, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27936535

ABSTRACT

The defect chemistry of perovskite oxides involves the cause to most of their abundant functional properties, including interface magnetism, charge transport, ionic exchange, and catalytic activity. The possibility to achieve dynamic control over oxygen anion vacancies offers a unique opportunity for the development of appealing switchable devices, which at present are commonly based on ferroelectric materials. Herein, we report the discovery of a switchable photovoltaic effect, that the sign of the open voltage and the short circuit current can be reversed by inverting the polarity of the applied field, upon electrically tailoring the distribution of oxygen vacancies in perovskite oxide films. This phenomenon is demonstrated in lateral photovoltaic devices based on both ferroelectric BiFeO3 and paraelectric SrTiO3 films, under a reversed applied field whose magnitude is much smaller than the coercivity value of BiFeO3. The migration of oxygen vacancies was directly observed by employing an advanced annular bright-field scanning transmission electron microscopy technique with in situ biasing equipment. We conclude that the band bending induced by the motion of oxygen vacancies is the driving force for the reversible switching between two photovoltaic states. The present work can provide an active path for the design of novel switchable photovoltaic devices with a wide range of transition metal oxides in terms of the ionic degrees of freedom.

9.
J Clin Virol ; 33(2): 123-31, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15911427

ABSTRACT

BACKGROUND: SARS coronavirus has been identified as the cause of severe acute respiratory syndrome (SARS). Few tests allow confirmation or exclusion of SARS within the first few days of infection. A gene chip is a useful tool for the study of microbial infections mainly for its capability of performing multi-target analysis in a single test. OBJECTIVES: Investigate the possibility of early detection of SARS virus from clinical samples using the gene chip-based method. STUDY DESIGN: We purified RNA from SARS-CoV obtained from routinely collected peripheral blood and sputum samples of 34 patients who had been identified as probable SARS patients by following the interim U.S. case definition. Four segments of the SARS-CoV were amplified using reverse transcription-nested PCR and the products examined using the 70-mer gene chips for SARS-CoV detection. RESULTS: A blind-test of both peripheral blood and sputum specimens lead to the positive detection of SARS-CoV in 31 out of 34 patients. SARS-CoV was not found in peripheral blood or sputum specimens from three patients. Two of the 34 patients were only 3 days post-onset of symptoms and were subsequently confirmed to be SARS positive. Our results indicate that the gene chip-based molecular test is specific for SARS-CoV and allows early detection of patients with SARS with detection rate about 8% higher than the single PCR test when the sputum sample is available.


Subject(s)
Molecular Diagnostic Techniques , Oligonucleotide Array Sequence Analysis , Severe Acute Respiratory Syndrome/diagnosis , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Blood/virology , China , Early Diagnosis , Humans , Polymerase Chain Reaction , RNA, Viral/analysis , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Severe Acute Respiratory Syndrome/genetics , Sputum/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...