Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Mol Cell Proteomics ; 23(4): 100748, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493954

ABSTRACT

The molecular mechanisms underlying muscular adaptations to concentric (CON) and eccentric (ECC) exercise training have been extensively explored. However, most previous studies have focused on specifically selected proteins, thus, unable to provide a comprehensive protein profile and potentially missing the crucial mechanisms underlying muscular adaptation to exercise training. We herein aimed to investigate proteomic profiles of human skeletal muscle in response to short-term resistance training. Twenty young males were randomly and evenly assigned to two groups to complete a 4-week either ECC or CON training program. Measurements of body composition and physiological function of the quadriceps femoris were conducted both before and after the training. Muscle biopsies from the vastus lateralis of randomly selected participants (five in ECC and four in CON) of both before and after the training were analyzed using the liquid-chromatography tandem mass spectrometry in combination with bioinformatics analysis. Neither group presented a significant difference in body composition or leg muscle mass; however, muscle peak torque, total work, and maximal voluntary contraction were significantly increased after the training in both groups. Proteomics analysis revealed 122 differentially abundant proteins (DAPs; p value < 0.05 & fold change >1.5 or <0.67) in ECC, of which the increased DAPs were mainly related to skeletal muscle contraction and cytoskeleton and enriched specifically in the pentose phosphate pathway, extracellular matrix-receptor interaction, and PI3K-Akt signaling pathway, whereas the decreased DAPs were associated with the mitochondrial respiratory chain. One hundred one DAPs were identified in CON, of which the increased DAPs were primarily involved in translation/protein synthesis and the mitochondria respiratory, whereas the decreased DAPs were related to metabolic processes, cytoskeleton, and de-ubiquitination. In conclusion, the 4-week CON and ECC training resulted in distinctly different proteomic profiles, especially in proteins related to muscular structure and metabolism.


Subject(s)
Adaptation, Physiological , Exercise , Muscle, Skeletal , Proteomics , Resistance Training , Humans , Male , Proteomics/methods , Young Adult , Muscle, Skeletal/metabolism , Exercise/physiology , Muscle Proteins/metabolism , Body Composition , Adult , Muscle Contraction , Proteome/metabolism
2.
J Agric Food Chem ; 72(13): 6913-6920, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38517181

ABSTRACT

To explore natural product-based pesticide candidates, a series of indole derivatives containing the isoxazoline skeleton at the N-1 position were synthesized by 1,3-dipolar [2 + 3] cycloaddition reaction. Their structures were characterized by melting points (mp), infrared (IR) spectra, proton nuclear magnetic resonance spectra (1H NMR), carbon-13 nuclear magnetic resonance spectra (13C NMR), and high resolution mass spectrometry (HRMS). The single-crystal structures of five compounds were presented. Against Tetranychus cinnabarinus Boisduval, compound 3b showed greater than 3.8-fold acaricidal activity of indole and good control effects under glasshouse conditions. Against Aphis citricola Van der Goot, compounds 3b and 3q exhibited 48.3- and 36.8-fold aphicidal activity of indole and 6-methylindole, respectively. Particularly, compound 3b showed good bioactivities against T. cinnabarinus and A. citricola. Against Eriosoma lanigerum Hausmann, compound 3h and 3i showed 2.1 and 1.9 times higher aphicidal activity compared to indole. Furthermore, the construction of the epidermal cuticle layer of 3b-treated carmine spider mites was distinctly damaged, which ultimately led to their death.


Subject(s)
Acaricides , Insecticides , Pesticides , Tetranychidae , Animals , Pesticides/pharmacology , Pesticides/chemistry , Molecular Structure , Acaricides/pharmacology , Acaricides/chemistry , Magnetic Resonance Spectroscopy , Indoles/pharmacology , Insecticides/pharmacology , Insecticides/chemistry , Structure-Activity Relationship
3.
ACS Appl Mater Interfaces ; 16(7): 8688-8696, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38323925

ABSTRACT

As a common water pollutant, Pb2+ has harmful effects on the nervous, hematopoietic, digestive, renal, cardiovascular, and endocrine systems. Due to the drawbacks of traditional adsorbents such as structural disorder, poor stability, and difficulty in introducing adsorption active sites, the adsorption capacity is low, and it is difficult to accurately study the adsorption mechanism. Herein, vinyl-functionalized covalent organic frameworks (COFs) were synthesized at room temperature, and sulfur-containing active groups were introduced by the click reaction. By precisely tuning the chemical structure of the sulfur-containing reactive groups through the click reaction, we found that the adsorption activity of the sulfhydryl group was higher than that of the sulfur atom in the thioether. Moreover, the incorporation of flexible linking groups was observed to enhance the adsorption activity at the active site. The maximum adsorption capacity of the postmodified COF TAVA-S-Et-SH for Pb(II) reached 303.0 mg/g, which is 2.9 times higher than that of the unmodified COF. This work not only demonstrates the remarkable potential of the "thiol-ene" click reaction for the customization of active adsorption sites but also demonstrates the remarkable potential of the "thiol-alkene" click reaction to explore the structure-effect relationship between the active adsorption sites and the metal ion adsorption capacity.

4.
Eur J Phys Rehabil Med ; 60(2): 361-372, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38345568

ABSTRACT

INTRODUCTION: Exercise-based cardiac rehabilitation (CR) plays a critical role in coronary heart disease (CHD) management. There is a heritage in the effect of exercise-based CR with different exercise programs or intervention settings. This study developed an evidence matrix that systematically assesses, organizes, and presents the available evidence regarding exercise-based CR in CHD management. EVIDENCE ACQUISITION: A comprehensive literature search was conducted across six databases. Two reviewers screened the identified literature, extracted relevant data, and assessed the quality of the studies. An evidence-mapping framework was established to present the findings in a structured manner. Bubble charts were used to represent the included systematic reviews (SRs). The charts incorporated information, exercise prescriptions, outcome indicators, associated P values, research quality, and the number of original studies. A descriptive analysis summarized the types of CR, intervention settings, influential factors, and adverse events. EVIDENCE SYNTHESIS: Sixty-two SRs were included in this analysis, focusing on six exercise types in addition to assessing major adverse cardiovascular events (MACE), cost and rehabilitation outcomes. The most commonly studied exercise types were unspecified (28 studies, 45.2%) and aerobic (11 studies, 17.7%) exercises. All-cause mortality was the most frequently reported MACE outcome (22 studies). Rehabilitation outcomes primarily centered around changes in cardiac function (135 outcomes from 39 SRs). Only 8 (12.9%) studies were rated as "high quality." No significant adverse events were observed in the intervention group. Despite some variations among the included studies, most SRs demonstrated the benefits of exercise in improving one or more MACE or rehabilitation outcomes among CHD patients. CONCLUSIONS: The proportion of high-quality evidence remains relatively low. Limited evidence is available regarding the effectiveness of specific exercise types and specific populations, necessitating further evaluation.


Subject(s)
Cardiac Rehabilitation , Coronary Disease , Myocardial Infarction , Humans , Quality of Life , Coronary Disease/etiology , Coronary Disease/rehabilitation , Exercise Therapy
5.
Nat Commun ; 15(1): 1118, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38320994

ABSTRACT

Immunotherapy with immune checkpoint blockade (ICB) for glioblastoma (GBM) is promising but its clinical efficacy is seriously challenged by the blood-tumor barrier (BTB) and immunosuppressive tumor microenvironment. Here, anti-programmed death-ligand 1 antibodies (aPD-L1) are loaded into a redox-responsive micelle and the ICB efficacy is further amplified by paclitaxel (PTX)-induced immunogenic cell death (ICD) via a co-encapsulation approach for the reinvigoration of local anti-GBM immune responses. Consequently, the micelles cross the BTB and are retained in the reductive tumor microenvironment without altering the bioactivity of aPD-L1. The ICB efficacy is enhanced by the aPD-L1 and PTX combination with suppression of primary and recurrent GBM, accumulation of cytotoxic T lymphocytes, and induction of long-lasting immunological memory in the orthotopic GBM-bearing mice. The co-encapsulation approach facilitating efficient antibody delivery and combining with chemotherapeutic agent-induced ICD demonstrate that the chemo-immunotherapy might reprogram local immunity to empower immunotherapy against GBM.


Subject(s)
Glioblastoma , Mice , Animals , Glioblastoma/pathology , Micelles , Immune Checkpoint Inhibitors/therapeutic use , Polymers/therapeutic use , Cell Line, Tumor , Neoplasm Recurrence, Local/drug therapy , Paclitaxel/therapeutic use , Immunotherapy , Tumor Microenvironment
6.
J Bioenerg Biomembr ; 56(2): 159-170, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38158500

ABSTRACT

BACKGROUND: This study aimed to investigate the role of circSlc8a1 in cardiac hypertrophy (CH), a pathological change in various cardiovascular diseases. METHODS: An in vitro CH model was established using angiotensin II (AngII) treated H9c2 cells, followed by western blotting and RT-qPCR for detecting relative expressions. Cell viability and proliferation were analyzed using CCK-8 and EdU assays, while lactate dehydrogenase (LDH), reactive oxygen species (ROS), glutathione (GSH), and iron levels were determined using corresponding kits. Moreover, dual-luciferase reporter and RNA pull-down assays were performed to demonstrate whether miR-673-5p is bound to circSlc8a1 or transferrin receptor (TFRC). RESULTS: The results indicated that the expressions of circSlc8a1 and TFRC were increased, while miR-673-5p was decreased in the AngII treated H9c2 cells. The ferroptosis inhibitor treatment decreased the atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and ß-major histocompatibility complex (ß-MHC) protein expressions, and circSlc8a1 expressions. Knocking down of circSlc8a1 inhibited promoted the cell viability and proliferation, increased the GSH content, glutathione peroxidase 4, and solute carrier family 7 member 11 protein expressions, and decreased the LDH, ROS, iron levels, and RAS protein expressions. The MiR-673-5p inhibitor antagonized the role of si-circSlc8a1, and the over-expressed TFRC reversed the miR-673-5p mimicking effects in AngII treated H9c2 cells. CONCLUSION: CircSlc8a1 promoted the ferroptosis in CH via regulating the miR-673-5p/TFRC axis.


Subject(s)
Ferroptosis , MicroRNAs , Humans , Angiotensin II/pharmacology , Angiotensin II/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Reactive Oxygen Species/metabolism , Cardiomegaly/metabolism , Cardiomegaly/pathology , Receptors, Transferrin , Iron/metabolism
7.
J Biol Chem ; 299(9): 105130, 2023 09.
Article in English | MEDLINE | ID: mdl-37543366

ABSTRACT

Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators in various biological processes. However, due to their low expression, their systematic characterization is difficult to determine. Here, we performed transcript annotation by a newly developed computational pipeline, termed RNA-seq and small RNA-seq combined strategy (RSCS), in a wide variety of cellular contexts. Thousands of high-confidence potential novel transcripts were identified by the RSCS, and the reliability of the transcriptome was verified by analysis of transcript structure, base composition, and sequence complexity. Evidenced by the length comparison, the frequency of the core promoter and the polyadenylation signal motifs, and the locations of transcription start and end sites, the transcripts appear to be full length. Furthermore, taking advantage of our strategy, we identified a large number of endogenous retrovirus-associated lncRNAs, and a novel endogenous retrovirus-lncRNA that was functionally involved in control of Yap1 expression and essential for early embryogenesis was identified. In summary, the RSCS can generate a more complete and precise transcriptome, and our findings greatly expanded the transcriptome annotation for the mammalian community.


Subject(s)
Molecular Sequence Annotation , RNA, Long Noncoding , RNA-Seq , Animals , Embryonic Development/genetics , Mammals/embryology , Mammals/genetics , Molecular Sequence Annotation/methods , Promoter Regions, Genetic/genetics , Reproducibility of Results , Retroviridae/genetics , RNA, Long Noncoding/genetics , RNA-Seq/methods , Transcription Initiation Site , Transcriptome/genetics , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism
8.
Pest Manag Sci ; 79(10): 3459-3470, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37139821

ABSTRACT

BACKGROUND: Nowadays, pest infestation and resistance have appeared as a consequence of repeated and extensive use of pesticides. Thus, development of new effective pesticide candidates in crop protection is highly desirable. Herein, a series of new piperine derivatives containing oxime ester scaffolds were regioselectively and stereoselectively prepared as pesticidal agents. RESULTS: Steric configurations of compounds 2, 5z and 13e were definitively determined by single-crystal X-ray diffraction. Against Tetranychus cinnabarinus, notably, compounds 5f [median lethal concentration (LC50 ) = 0.14 mg mL-1 ] and 5v (LC50 = 0.13 mg mL-1 ) showed >107-fold greater acaricidal activity than piperine (LC50 = 15.02 mg mL-1 ), which were comparable to the commercial acaricide spirodiclofen. Against Aphis citricola, compound 5d (LD50 = 19.12 ng aphid-1 ) exhibited 6.1-fold more potent aphicidal activity than piperine (LD50 = 116.06 ng aphid-1 ). Additionally, through scanning electron microscopy, the toxicology study suggested that the acaricidal activity of piperine derivatives may be related to damage of the cuticle layer crest of T. cinnabarinus. CONCLUSION: The structure-activity relationships suggested that 3,4-dioxymethylene of piperine was crucial for its acaricidal activity; and introduction of a certain length of aliphatic chain at the C-2 position was beneficial to the aphicidal and acaricidal activities. Compounds 5f and 5v are potential leads for further structural modification as acaricidal agents. © 2023 Society of Chemical Industry.


Subject(s)
Acaricides , Insecticides , Pesticides , Tetranychidae , Animals , Pesticides/chemistry , Molecular Structure , Esters/chemistry , Oximes/pharmacology , Structure-Activity Relationship , Acaricides/pharmacology , Acaricides/chemistry , Insecticides/pharmacology , Insecticides/chemistry
9.
Adv Mater ; 35(25): e2209785, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37101060

ABSTRACT

Immunotherapy with immune checkpoint inhibitors (CPIs) shows promising prospects for glioblastoma multiforme (GBM) but with restricted results, mainly attributed to the immunosuppressive tumor microenvironment (TME) and the limited antibody permeability of the blood-tumor barrier (BTB) in GBM. Here, nanovesicles with a macrophage-mimicking membrane are described, that co-deliver chemotactic CXC chemokine ligand 10 (CXCL10), to pre-activate the immune microenvironment, and anti-programmed death ligand 1 antibody (aPD-L1), to interrupt the immune checkpoint, aiming to enhance the effect of GBM immunotherapy. Consequently, the tumor tropism of the macrophage membrane and the receptor-mediated transcytosis of the angiopep-2 peptide allow the nanovesicle to effectively cross the BTB and target the GBM region, with 19.75-fold higher accumulation of antibodies compared to the free aPD-L1 group. The CPI therapeutic efficacy is greatly enhanced by CXCL10-induced T-cells recruitment with significant expansion of CD8+ T-cells and effector memory T-cells, leading to the elimination of tumor, prolonged survival time, and long-term immune memory in orthotopic GBM mice. The nanovesicles, that relieve the tumor immunosuppressive microenvironment by CXCL10 to enhance aPD-L1 efficacy, may present a promising strategy for brain-tumor immunotherapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Mice , Animals , Glioblastoma/therapy , Glioblastoma/pathology , CD8-Positive T-Lymphocytes , Cytokines , Antibodies/therapeutic use , Brain Neoplasms/therapy , Macrophages , Immunotherapy/methods , Brain/pathology , Tumor Microenvironment
10.
Clin Breast Cancer ; 23(4): 397-407, 2023 06.
Article in English | MEDLINE | ID: mdl-36858841

ABSTRACT

INTRODUCTION: Breast cancer (BC) remains one of the biggest threats to women's health. Protocadherin gene Protocadherin Alpha 1 (PCDHA1) is abnormally highly expressed in breast cancer tissues. However, the biological role of PCDHA1 in breast cancer has not been fully elucidated and the relationship with the immune microenvironment needs to be further studied. MATERIALS AND METHODS: TCGA-BRCA gene expression profiles were used to characterize PCDHA1. Kaplan-Meier method was used to estimate PCDHA1 prognosis potential. Gene set enrichment analysis (GSEA) analysis was performed to determine the signaling pathways altered by PCDHA1 aberrant expression. The correlations between PCDHA1 and immune cell infiltration levels were analyzed by CIBERSORT. Wilcoxon's rank-sum test was used to identify chemokine and chemokine receptors significantly associated with PCDHA1. The CCK8 assay and the transwell invasion assay were occupied to evaluate the effect of PCDHA1 overexpression on BC cells. RESULTS: Survival analysis revealed PCDHA1 overexpression was associated with poor prognosis in BC. Enrichment analysis uncovered several metabolism pathways were activated by PCDHA1 overexpression. Moreover, PCDHA1 was positively correlated with activated NK cells but negatively correlated with resting NK cells infiltration. In addition, chemokines CCL28, CXCL17, and receptor CCR9 expression were associated with PCDHA1 overexpression. The CCK8 assay and the transwell invasion assay proved that PCDHA1 overexpression enhanced MCF-7 and MDA-MB-231 cell proliferation and invasion. CONCLUSION: This study demonstrated that PCDHA1 effectively predicted BC prognosis. Upregulated PCDHA1 activated metabolism pathways, and promoted NK cells and chemokines. PCDHA1 overexpression enhanced BC cell proliferation and invasion. Therefore, an understanding of PCDHA1's function in BC may yield insights into the mechanisms of BC development.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Protocadherins , Breast , Women's Health , Gene Expression , Prognosis , Tumor Microenvironment
11.
In Vitro Cell Dev Biol Anim ; 59(2): 142-152, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36867291

ABSTRACT

Porcine pluripotent stem cells had been derived from different culture systems. PeNK6 is a porcine pluripotent stem cell line that we established from an E5.5 embryo in a defined culture system. Signaling pathways related with pluripotency had been assessed in this cell line, and TGF-ß signaling pathway-related genes were found upregulated significantly. In this study, we elucidated the role of the TGF-ß signaling pathway in PeNK6 through adding small molecule inhibitors, SB431542 (KOSB) or A83-01 (KOA), into the original culture medium (KO) and analyzing the expression and activity of key factors involved in the TGF-ß signaling pathway. In KOSB/KOA medium, the morphology of PeNK6 became compact and the nuclear-to-cytoplasm ratio was increased. The expression of the core transcription factor SOX2 was significantly upregulated compared with cell lines in the control KO medium, and the differentiation potential became balanced among three germ layers rather than bias to neuroectoderm/endoderm as the original PeNK6 did. The results indicated that inhibition of TGF-ß has positive effects on the porcine pluripotency. Based on these results, we established a pluripotent cell line (PeWKSB) from E5.5 blastocyst by employing TGF-ß inhibitors, and the cell line showed improved pluripotency.


Subject(s)
Pluripotent Stem Cells , Transforming Growth Factor beta , Animals , Swine , Transforming Growth Factor beta/metabolism , Cell Differentiation/genetics , Germ Layers/metabolism , Embryo, Mammalian
12.
Pest Manag Sci ; 79(8): 2801-2810, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36929618

ABSTRACT

BACKGROUND: Phytopathogenic fungi can cause a direct loss in economic value of agriculture. Especially Valsa mali Miyabe et Yamada, a devastating phytopathogenic disease especially threatening global apple production, is very difficult to control and manage. To discover new potential antifungal agents, a series of thiosemicarbazone derivatives of 3-acetyl-N-benzylindoles were prepared. Their antifungal activities were first tested against six typically phytopathogenic fungi including Curvularia lunata, Valsa mali, Alternaria alternate, Fusarium graminearum, Botrytis cinerea and Fusarium solani. Then their mechanism of action against V. mali was investigated. RESULTS: Derivatives displayed potent antifungal activity against V. mali. Notably, 3-acetyl-N-benzylindole thiosemicarbazone (IV-1: EC50 : 0.59 µg mL-1 ), whose activity was comparable to that of a commercial fungicide carbendazim (EC50 : 0.33 µg mL-1 ), showed greater than 98-fold antifungal activity of the precursor indole. Moreover, compound IV-1 displayed good protective and therapeutic effects on apple Valsa canker disease. By scanning electron microscope (SEM) and RNA-Seq analysis, it was demonstrated that compound IV-1 can destroy the hyphal structure and regulate the homeostasis of metabolism of V. mali via the ergosterol biosynthesis and autophagy pathways. CONCLUSION: 3-Acetyl-N-(un)substituted benzylindoles thiosemicarbazones (IV-1-IV-5) can be studied as leads for further structural modification as antifungal agents against V. mali. Particularly, these ergosterol biosynthesis and autophagy pathways can be used as target receptors for design of novel green pesticides for management of congeneric phytopathogenic fungi. © 2023 Society of Chemical Industry.


Subject(s)
Ascomycota , Biological Products , Fungicides, Industrial , Thiosemicarbazones , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Thiosemicarbazones/pharmacology , Biological Products/pharmacology , Crop Protection , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Ergosterol/pharmacology , Structure-Activity Relationship
13.
Appl Opt ; 62(4): 1057-1065, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36821163

ABSTRACT

A modified uni-traveling carrier photodiode with an electric field control layer is proposed to achieve high-speed and high-power performance at a lower bias voltage. By inserting the 10 nm p-type InGaAs electric field control layer between the intrinsic absorption layer and space layer, the electric field distribution in the depleted absorption layer and depleted non-absorption layer can be changed. It is beneficial for reducing power consumption and heat generation, meanwhile suppressing the space-charge effect. Compared with the original structure without the electric field control layer, the 3 dB bandwidth of the 20 µm diameter novel structure, to the best of our knowledge, is improved by 27.1% to 37.5 GHz with a reverse bias of 2 V, and the RF output power reaches 23.9 dBm at 30 GHz. In addition, under 8 V bias voltage, the bandwidth reaches 47.3 GHz.

14.
Anim Biosci ; 36(2): 200-208, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36108684

ABSTRACT

OBJECTIVE: Muscle acetylcholine receptors have five alpha subunits (α, ß, δ, ε, or γ), and cholinergic receptor nicotinic gamma subunit (CHRNG) is the γ subunit. It may also play an essential role in biological processes, including cell differentiation, growth, and survival, while the role of CHRNG has not been studied in the literature. Therefore, the purpose of this study is to clarify the effect of CHRNG on the proliferation and differentiation of bovine preadipocytes. METHODS: We constructed a CHRNG overexpression adenovirus vector and successfully overexpressed it on bovine preadipocytes. The effects of CHRNG on bovine preadipocyte proliferation were detected by Edu assay, cell counting Kit-8 (CCK-8), real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), Western blot and other techniques. We also performed oil red O, RT-qPCR, Western blot to explore its effect on the differentiation of preadipocytes. RESULTS: The results of Edu proliferation experiments showed that the number of EDU-positive cells in the overexpression group was significantly less. CCK-8 experiments found that the optical density values of the cells in the overexpression group were lower than those of the control group, the mRNA levels of proliferating cell nuclear antigen (PCNA), cyclin A2 (CCNA2), cyclin B1 (CCNB1), cyclin D2 (CCND2) decreased significantly after CHRNG gene overexpression, the mRNA levels of cyclin dependent kinase inhibitor 1A (CDKN1A) increased significantly, and the protein levels of PCNA, CCNB1, CCND2 decreased significantly. Overexpression of CHRNG inhibited the differentiation of bovine preadipocytes. The results of oil red O and triglyceride determination showed that the size and speed of lipid droplets accumulation in the overexpression group were significantly lower. The mRNA and protein levels of peroxisome proliferator activated receptor gamma (PPARγ), CCAAT enhancer binding protein alpha (CEBPα), fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN) decreased significantly. CONCLUSION: Overexpression of CHRNG in bovine preadipocytes inhibits the proliferation and differentiation of bovine preadipocytes.

15.
Int J Mol Sci ; 23(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36499340

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, with a five-year survival rate of approximately 5-10%. The immune checkpoint blockade represented by PD-1/PD-L1 inhibitors has been effective in a variety of solid tumors but has had little clinical response in pancreatic cancer patients. The unique suppressive immune microenvironment is the primary reason for this outcome, and it is essential to identify key targets to remodel the immune microenvironment. Some B7 family immune checkpoints, particularly PD-L1, PD-L2, B7-H3, B7-H4, VISTA and HHLA2, have been identified as playing a significant role in the control of tumor immune responses. This paper provides a comprehensive overview of the recent research progress of some members of the B7 family in pancreatic cancer, which revealed that they can be involved in tumor progression through immune-dependent and non-immune-dependent pathways, highlighting the mechanisms of their involvement in tumor immune escape and assessing the prospects of their clinical application. Targeting B7 family immune checkpoints is expected to result in novel immunotherapeutic treatments for patients with pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , B7-H1 Antigen , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Immunoglobulins/pharmacology , Immunotherapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Tumor Microenvironment , Pancreatic Neoplasms
16.
Int J Biol Macromol ; 223(Pt A): 916-930, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36375665

ABSTRACT

DNA methylation (5mC) and mRNA N6-methyladenosine (m6A) play an essential role in gene transcriptional regulation. DNA methylation has been well established to be involved in skeletal muscle development. Interacting regulatory mechanisms between DNA methylation and mRNA m6A modification have been identified in a variety of biological processes. However, the effect of m6A on skeletal muscle differentiation and the underlying mechanisms are still unclear. It is also unknown whether there is an interaction between DNA methylation and mRNA m6A modification in skeletal myogenesis. In the present study, we used m6A-IP-qPCR, LC-MS/MS and dot blot assays to determine that the DNA demethylase gene, TET1, exhibited increased m6A levels and decreased mRNA expression during bovine skeletal myoblast differentiation. Dual-luciferase reporter assays and RIP experiments demonstrated that METTL3 suppressed TET1 expression by regulating TET1 mRNA stability in a m6A-YTHDF2-dependent manner. Furthermore, TET1 mediated DNA demethylation of itself, MYOD1 and MYOG, thereby stimulating their expression to promote myogenic differentiation. Ectopic expression of TET1 rescued the effect of METTL3 knockdown on reduced myotubes. In contrast, TET1 knockdown impaired the myogenic differentiation promoted by METTL3 overexpression. Moreover, ChIP experiments found that TET1 could bind and demethylate METTL3 DNA, which enhanced METTL3 expression. In addition, TET1 knockdown decreased m6A levels. ChIP assays also showed that TET1 knockdown contributed to the binding of H3K4me3 and H3K27me3 to METTL3 DNA. Our results revealed a negative feedback regulatory loop between TET1 and METTL3 in myoblast differentiation, which unveiled the interplay among DNA methylation, RNA methylation and histone methylation in skeletal myogenesis.


Subject(s)
Methyltransferases , Tandem Mass Spectrometry , Cattle , Animals , Chromatography, Liquid , Methyltransferases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , DNA Methylation
17.
Toxins (Basel) ; 14(9)2022 09 12.
Article in English | MEDLINE | ID: mdl-36136570

ABSTRACT

Dehydroabietic acid is a tricyclic diterpenoid resin acid isolated from rosin. Dehydroabietic acid and its derivatives showed lots of medical and agricultural bioactivities, such as anticancer, antibacterial, antiviral, antiulcer, insecticidal, and herbicidal activities. This review summarized the research advances on the structural modification and total synthesis of dehydroabietic acid and its derivatives from 2015 to 2021, and analyzed the biotransformation and structure-activity relationships in order to provide a reference for the development and utilization of dehydroabietic acid and its derivatives as drugs and pesticides.


Subject(s)
Diterpenes , Pesticides , Abietanes , Anti-Bacterial Agents/pharmacology , Antiviral Agents , Diterpenes/chemistry , Diterpenes/pharmacology , Structure-Activity Relationship
18.
Animals (Basel) ; 12(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35327170

ABSTRACT

N6-methyladenosine (m6A) plays an important role in regulating gene expression. Previous studies found that m6A methylation affects skeletal muscle development. However, the effect of m6A methylases on bovine skeletal myogenesis is still unclear. Here, we found that the expression of m6A demethylases (FTO and ALKBH5) was significantly higher in the longissimus dorsi muscle of adult cattle than in newborn cattle. In contrast, the expression of m6A methyltransferases (METTL3, METTL14 and WTAP) was reduced. The mRNA expression of all five genes was found to be increased during the myogenesis of myoblasts in vitro. Knockdown of FTO or METTL3 promoted myoblast proliferation, inhibited myoblast apoptosis and suppressed myogenic differentiation, whereas ALKBH5 knockdown had the opposite effect. METTL14 knockdown enhanced myoblast proliferation and impaired myogenic differentiation. WTAP knockdown attenuated proliferation and contributed to apoptosis but did not affect differentiation. Furthermore, the functional domains of these five m6A methylases are conserved across species. Our results suggest that m6A methylases are involved in regulating skeletal muscle development and that there may be a complex network of m6A methylation regulating skeletal myogenesis.

19.
Biomolecules ; 12(1)2022 01 02.
Article in English | MEDLINE | ID: mdl-35053213

ABSTRACT

Genome-scale metabolic models (GEMs) have been widely used for the phenotypic prediction of microorganisms. However, the lack of other constraints in the stoichiometric model often leads to a large metabolic solution space being inaccessible. Inspired by previous studies that take an allocation of macromolecule resources into account, we developed a simplified Python-based workflow for constructing enzymatic constrained metabolic network model (ECMpy) and constructed an enzyme-constrained model for Escherichia coli (eciML1515) by directly adding a total enzyme amount constraint in the latest version of GEM for E. coli (iML1515), considering the protein subunit composition in the reaction, and automated calibration of enzyme kinetic parameters. Using eciML1515, we predicted the overflow metabolism of E. coli and revealed that redox balance was the key reason for the difference between E. coli and Saccharomyces cerevisiae in overflow metabolism. The growth rate predictions on 24 single-carbon sources were improved significantly when compared with other enzyme-constrained models of E. coli. Finally, we revealed the tradeoff between enzyme usage efficiency and biomass yield by exploring the metabolic behaviours under different substrate consumption rates. Enzyme-constrained models can improve simulation accuracy and thus can predict cellular phenotypes under various genetic perturbations more precisely, providing reliable guidance for metabolic engineering.


Subject(s)
Computer Simulation , Escherichia coli Proteins , Escherichia coli , Metabolic Networks and Pathways , Models, Biological , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Metabolic Engineering , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
20.
IEEE Trans Pattern Anal Mach Intell ; 44(7): 3602-3613, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33534703

ABSTRACT

Imbalanced data distribution in crowd counting datasets leads to severe under-estimation and over-estimation problems, which has been less investigated in existing works. In this paper, we tackle this challenging problem by proposing a simple but effective locality-based learning paradigm to produce generalizable features by alleviating sample bias. Our proposed method is locality-aware in two aspects. First, we introduce a locality-aware data partition (LADP) approach to group the training data into different bins via locality-sensitive hashing. As a result, a more balanced data batch is then constructed by LADP. To further reduce the training bias and enhance the collaboration with LADP, a new data augmentation method called locality-aware data augmentation (LADA) is proposed where the image patches are adaptively augmented based on the loss. The proposed method is independent of the backbone network architectures, and thus could be smoothly integrated with most existing deep crowd counting approaches in an end-to-end paradigm to boost their performance. We also demonstrate the versatility of the proposed method by applying it for adversarial defense. Extensive experiments verify the superiority of the proposed method over the state of the arts.

SELECTION OF CITATIONS
SEARCH DETAIL
...