Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Mar Pollut Bull ; 178: 113638, 2022 May.
Article in English | MEDLINE | ID: mdl-35413505

ABSTRACT

Under eutrophication background, the increasing dinoflagellates blooms relative to diatoms blooms off the Changjiang Estuary has caused much concern. We have provided sediment evidence for the first time that the time window of diatoms-to-dinoflagellates shift off the Changjiang Estuary in the East China Sea is early 1990s. Investigations to the water column revealed different surface-bottom concentration matchup patterns between peridinin (dinoflagellates) and fucoxanthin (diatoms), which suggests that the diatoms-dinoflagellates shift recorded in the sediment may have come from more dinoflagellate blooms since 1990s. Physical-biogeochemical 3D numerical simulations for the past decades suggest that the effect of increasing spring sea surface temperature and increasing N/P ratio on the diatoms-dinoflagellates shift is dominant and recessive, respectively.


Subject(s)
Diatoms , Dinoflagellida , Estuaries , Eutrophication , Phytoplankton
2.
Huan Jing Ke Xue ; 35(7): 2705-13, 2014 Jul.
Article in Chinese | MEDLINE | ID: mdl-25244858

ABSTRACT

The biogeochemical behavior of arsenic in the aquatic environment has already captured the attentions of scientists due to its complex forms and toxicity. Four cruises were carried out in April, August, October 2011 and January 2012 in the Sanggou Bay. The concentrations of total dissolved inorganic arsenic (TDIAs, TDIAs = [ As(5+] + [As(3+)]) and arsenite (As(3+)) were measured by Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS). The concentrations of TDIAs ranged from 3.4-12.4 nmol x L(-1) in April, 8.9-16.9 nmol x L(-1) in August, 14.7-21.3 nmol x L(-1) in October and 13.8-21.9 nmol x L(-1) in January. The concentrations of arsenite ranged from 0.3-2.1 nmol x L(-1), 0.4-3.8 nmol x L(-1), 1.8-4.0 nmol x L(-1) and 0.3-2.9 nmol x L(-1) during four cruises, respectively. The concentrations of TDIAs in spring and summer were lower than those in autumn and winter, and high values of TDIAs appeared in the bay-mouth and the coastal estuary. The concentrations of arsenite in spring and winter were lower than those in summer and autumn. The maximum As(3+)/TDIAs ratios appeared in summer. The mean value of TDIAs in the Sanggou Bay was (13.9 +/- 4.7) nmol x L(-1), which was lower than the national primary drinking in water Standards from USEPA and met the first grade water quality based on the environmental quality standards for surface water of China. It indicates that there is no obvious anthropogenic pollution. The concentrations of TDIAs in the Sanggou Bay were lower than those in the Ailian Bay and the Lidao Bay in spring and summer due to the different hydrological environments and terrestrial inputs. Riverine input, incursion of Yellow Sea and biological activities were the three main factors impacting the distribution of TDIAs in the Sanggou Bay, and the influence of aquaculture activities was particularly significant. The enrichment of arsenic by aquaculture may lead to potential ecological crisis and food safety problems, and need to be paid more attentions to ensure the sustainable development of aquaculture in the Sanggou Bay.


Subject(s)
Arsenic/analysis , Environmental Monitoring , Seasons , Water Pollutants, Chemical/analysis , Aquaculture , Bays , China , Conservation of Natural Resources , Estuaries , Water Quality
3.
Huan Jing Ke Xue ; 33(3): 720-6, 2012 Mar.
Article in Chinese | MEDLINE | ID: mdl-22624360

ABSTRACT

The concentrations of total dissolved inorganic arsenic (TDIAs) were measured by Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS). Two cruises were carried out in the river, estuary, coastal area and groundwater of eastern Hainan in December 2006 and August 2007. The concentrations of TDIAs in the Wanquan and Wenchang/Wenjiao rivers and their estuaries, coastal area in December 2006 were 4.0-9.4, 1.3-13.3, 13.3-17.3 nmol x L(-1), respectively. The concentrations of TDIAs in the Wanquan and Wenchang/Wenjiao rivers and their estuaries, coastal area in August 2007 were 1.6-15.5, 2.4-15.9, 10.8-17.6 nmol x L(-1), respectively. There was no significantly seasonal variation of TDIAs in the rivers and estuaries during the dry and wet seasons. Compared with other areas in the world, the concentration of TDIAs in the Eastern Hainan remained at pristine levels. TDIAs showed conservatively mixing in the both estuaries. The concentration of TDIAs of groundwater was below detection limit (BDL)-41.7 nmol x L(-1). The submarine groundwater discharge (SGD) to the coastal area was estimated in the drainage basin of Wenchang/Wenjiao river based on the average concentration of TDIAs in the groundwater and SGD water discharge, with the value of 1 153 mol x a(-1). Budget estimation indicated that the SGD discharge is one of the important sources of arsenic in the coastal area.


Subject(s)
Arsenicals/analysis , Environmental Monitoring , Inorganic Chemicals/analysis , Water Pollutants, Chemical/analysis , China , Oceans and Seas , Rivers , Seasons , Solubility
4.
Mar Pollut Bull ; 60(9): 1591-9, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20427060

ABSTRACT

Inorganic or bulk organic chemical indicators, including organic carbon (OC), total nitrogen, organic nitrogen (ON), fixed ammonium (N(fix)), exchangeable ammonium, exchangeable nitrate, organic phosphorus (OP), inorganic phosphorus (IP), and biogenic silica (BSi), were examined in a 3-m core collected in Jiaozhou Bay (JZB) to decipher how the environment has changed during the preceding two centuries of increasing anthropogenic influence in this region. Concentrations of BSi, OC, and OP reveal overall increases to ca.30 cm ( approximately 1984), then decreased toward the surface, probably reflecting a decrease in the productivity of overlying waters since 1984. Aquaculture might play an important role in the decrease of nutrient elements in the upper layers recorded in sediments. The decreased molar BSi/OC ratios upcore may be due to a change in dominance from large- to small-sized diatoms, as shown in other research. However, the shift may also be related to changes from heavily-silicified to lightly-silicified diatoms or to non-siliceous forms such as dinoflagellates. ON concentrations increased towards the surface sediment, which is most likely consistent with the increase in fertilizer application and wastewater discharge. Concentrations of IP, total P, and N(fix) all decreased conspicuously upcore at 41 cm depth ( approximately 1977), and were largely consistent with the decrease in rainfall and freshwater discharge to JZB. Our data suggest that the environment has significantly changed since the 1980s. Anthropogenic activities in the watersheds may exert a substantial influence on carbon cycling processes in estuaries and potentially the coastal ocean.


Subject(s)
Environmental Monitoring , Geologic Sediments/analysis , Nitrogen Compounds/analysis , Organophosphates/analysis , Animals , Aquaculture , Environmental Monitoring/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...