Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci China Life Sci ; 61(2): 235-243, 2018 02.
Article in English | MEDLINE | ID: mdl-28895115

ABSTRACT

The SU(VAR)-3-9-related protein family member SUVR2 has been previously identified to be involved in transcriptional gene silencing both in RNA-dependent and -independent pathways. It interacts with the chromatin-remodeling proteins CHR19, CHR27, and CHR28 (CHR19/27/28), which are also involved in transcriptional gene silencing. Here our study demonstrated that SUVR2 is almost fully mono-sumoylated in vivo. We successfully identified the exact SUVR2 sumoylation site by combining in vitro mass spectrometric analysis and in vivo immunoblotting confirmation. The luminescence imaging assay and quantitative RT-PCR results demonstrated that SUVR2 sumoylation is involved in transcriptional gene silencing. Furthermore, we found that SUVR2 sumoylation is required for the interaction of SUVR2 with CHR19/27/28, which is consistent with the fact that SUMO proteins are necessary for transcriptional gene silencing. These results suggest that SUVR2 sumoylation contributes to transcriptional gene silencing by facilitating the interaction of SUVR2 with the chromatin-remodeling proteins CHR19/27/28.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , Gene Silencing , Sumoylation , Arabidopsis Proteins/genetics , Chromatin Assembly and Disassembly/genetics , Immunoblotting , Mass Spectrometry , Mutation , Nuclear Proteins/metabolism , Plants, Genetically Modified , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism
2.
Front Plant Sci ; 8: 298, 2017.
Article in English | MEDLINE | ID: mdl-28326091

ABSTRACT

Cereals high in amylose content (AC) and resistant starch (RS) offer potential health benefits. Previous studies using chemical mutagenesis or RNA interference have demonstrated that starch branching enzyme (SBE) plays a major role in determining the fine structure and physical properties of starch. However, it remains a challenge to control starch branching in commercial lines. Here, we use CRISPR/Cas9 technology to generate targeted mutagenesis in SBEI and SBEIIb in rice. The frequencies of obtained homozygous or bi-allelic mutant lines with indels in SBEI and SBEIIb in T0 generation were from 26.7 to 40%. Mutations in the homozygous T0 lines stably transmitted to the T1 generation and those in the bi-allelic lines segregated in a Mendelian fashion. Transgene-free plants carrying only the frame-shifted mutagenesis were recovered in T1 generation following segregation. Whereas no obvious differences were observed between the sbeI mutants and wild type, sbeII mutants showed higher proportion of long chains presented in debranched amylopectin, significantly increased AC and RS content to as higher as 25.0 and 9.8%, respectively, and thus altered fine structure and nutritional properties of starch. Taken together, our results demonstrated for the first time the feasibility to create high-amylose rice through CRISPR/Cas9-mediated editing of SBEIIb.

4.
Sci Rep ; 5: 15089, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26462750

ABSTRACT

Width-controlled M-type hexagonal SrFe12O19 nanoribbons were synthesized for the first time via polyvinylpyrrolidone (PVP) sol assisted electrospinning followed by heat treatment in air, and their chemical composition, microstructure and magnetic performance were investigated. Results demonstrated that as-obtained SrFe12O19 nanoribbons were well-crystallized with high purity. Each nanoribbon was self-assembled by abundant single-domain SrFe12O19 nanoparticles and was consecutive on structure and uniform on width. PVP in the spinning solution played a significant influence on the microstructure features of SrFe12O19 nanoribbons. With PVP concentration increasing, the ribbon-width was increased but the particle-size was reduced, which distributed on a same ribbon were more intensive, and then the ribbon-surface became flat. The room temperature magnetic performance investigation revealed that considerable large saturation magnetization (Ms) and coercivity (Hc) were obtained for all SrFe12O19 nanoribbons, and they increased with the ribbon-width broadening. The highest Ms of 67.9 emu · g(-1) and Hc of 7.31 kOe were concurrently acquired for SrFe12O19 nanoribbons with the maximum ribbon-width. Finally, the Stoner-Wohlfarth curling model was suggested to dominate the magnetization reverse of SrFe12O19 nanoribbons. It is deeply expected that this work is capable of opening up a new insights into the architectural design of 1D magnetic materials and their further utilization.

5.
Nanoscale ; 7(35): 14738-46, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26285104

ABSTRACT

Being capable of gathering advanced optical, electrical and magnetic properties originating from different components, multifunctional composite nanomaterials have been of concern increasingly. Herein, we have successfully demonstrated the preparation of SrTiO3/NiFe2O4 porous nanotubes (PNTs) and SrTiO3/NiFe2O4 particle-in-tubes (PITs) via a single-spinneret electrospinning and a side-by-side-spinneret electrospinning, respectively. The products were characterized by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV-visible diffuse reflectance spectra and a vibrating sample magnetometer in detail. The results indicate that SrTiO3/NiFe2O4 PNTs are the heterojunction nanotubes by connecting perovskite SrTiO3 and spinel NiFe2O4 nanoparticles, but SrTiO3/NiFe2O4 PITs are the self-assembled core/shell structures by embedding SrTiO3 nanoparticles into NiFe2O4 nanotubes. Compared with pure SrTiO3 nanofibers, the two SrTiO3/NiFe2O4 composites exhibit a powerful light response and excellent room temperature ferromagnetism. The magnetic separations directly reveal that such amazing recycling efficiencies of about 95% for SrTiO3/NiFe2O4 PNTs and about 99.5% for SrTiO3/NiFe2O4 PITs are obtained. Furthermore, both the magnetic composites perform considerable photocatalytic activity in the degradation of rhodamine B. We propose that Kirkendall-diffusion and phase-separation are probably responsible for the formation of SrTiO3/NiFe2O4 PITs, and this work could provide a feasible way to assemble the core/shell structures of different materials.

6.
Phys Chem Chem Phys ; 17(19): 12841-8, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25907405

ABSTRACT

A range of robust SiO2-modified CoFe2O4 hollow nanofibers with high uniformity and productivity were successfully prepared via polyvinylpyrrolidone-sol assisted electrospinning followed by annealing at a high temperature of 1000 °C, and they were characterized using scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, X-ray diffraction and X-ray photoelectron spectroscopy in detail. It was demonstrated that amorphous SiO2 has a significant influence on not only the surface morphology, microstructure and crystalline size but also the room temperature magnetic performance of the inverse spinel CoFe2O4 nanofibers. The pure CoFe2O4 sample shows a particle chain rod-shape appearance but the SiO2-modified CoFe2O4 sample shows a robust hollow fibrous structure. With increasing SiO2 content, an increase at first and then a decrease in coercivity (Hc) and monotonously a decrease in saturation magnetization (Ms) have been determined in the obtained modified CoFe2O4 hollow nanofibers. A maximum Ms of about 80 emu g(-1) and a maximum Hc of about 1477 Oe could be, respectively, acquired from the pure CoFe2O4 nanorods and the modified CoFe2O4 hollow nanofibers with about 14.9% SiO2. The changes in Ms, Hc and the structure evolution mechanism of these SiO2-modified CoFe2O4 hollow nanofibers have been elaborated systematically. Furthermore, it is suggested that amorphous SiO2 enables effectively improving the structure endurance of 1D electrospun inorganic oxide hollow nanostructures being subjected to high temperatures.

7.
Mol Plant ; 8(7): 1053-68, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25684655

ABSTRACT

Although DNA methylation is known to play an important role in the silencing of transposable elements (TEs) and introduced transgenes, the mechanisms that generate DNA methylation-independent transcriptional silencing are poorly understood. Previous studies suggest that RNA-directed DNA methylation (RdDM) is required for the silencing of the RD29A-LUC transgene in the Arabidopsis ros1 mutant background with defective DNA demethylase. Loss of function of ARGONAUTE 4 (AGO4) gene, which encodes a core RdDM component, partially released the silencing of RD29A-LUC in the ros1/ago4 double mutant plants. A forward genetic screen was performed to identify the mutants with elevated RD29A-LUC transgene expression in the ros1/ago4 mutant background. We identified a mutation in the homologous gene of PRP31, which encodes a conserved pre-mRNA splicing factor that regulates the formation of the U4/U6.U5 snRNP complex in fungi and animals. We previously demonstrated that the splicing factors ZOP1 and STA1 contribute to transcriptional gene silencing. Here, we reveal that Arabidopsis PRP31 associates with ZOP1, STA1, and several other splicing-related proteins, suggesting that these splicing factors are both physically and functionally connected. We show that Arabidopsis PRP31 participates in transcriptional gene silencing. Moreover, we report that PRP31, STA1, and ZOP1 are required for development and stress response. Under cold stress, PRP31 is not only necessary for pre-mRNA splicing but also for regulation of cold-responsive gene expression. Our results suggest that the splicing machinery has multiple functions including pre-mRNA splicing, gene regulation, transcriptional gene silencing, and stress response.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Gene Silencing , Stress, Physiological/genetics , Transcription Factors/metabolism , Transcription, Genetic/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cold Temperature , Germination , Mutation , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...