Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.095
Filter
1.
Article in English | MEDLINE | ID: mdl-38695984

ABSTRACT

PURPOSE: With advances in immunology, increasing evidence suggests that immunity is involved in premature ovarian insufficiency (POI) pathogenesis. This study investigated the roles of immune checkpoint genes and immune cell infiltration in POI pathogenesis and development. METHODS: The GSE39501 dataset and immune checkpoint genes were obtained from the Gene Expression Omnibus database and related literature. The two datasets were intersected to obtain immune checkpoint-related differentially expressed genes (ICRDEGs), which were analyzed using Gene Ontology and Kyoto Encyclopedia of Gene and Genomes enrichment analysis, weighted correlation network analysis, protein-protein interaction and related microRNAs, transcription factors, and RNA binding proteins. The immune cell infiltration of ICRDEGs was explored, and receiver operating characteristic curves were used to validate the diagnostic value of ICRDEGs in POI. RESULTS: We performed ICRDEG functional enrichment analysis and found that these genes were closely related to immune processes, such as T cell activation. Specifically, they are enriched in various biological processes and pathways, such as cell adhesion molecule and T cell receptor signaling pathways. Weighted correlation network analysis identified seven hub genes: Cd200, Cd274, Cd28, neurociliary protein-1, Cd276, Cd40lg, and Cd47. Furthermore, we identified 112 microRNAs, 17 RNA-binding proteins, and 101 transcription factors. Finally, immune infiltration analysis showed a clear positive correlation between hub genes and multiple immune cell types. CONCLUSION: Bioinformatic analysis identified seven potential ICRDEGs associated with POI, among which the immune checkpoint molecules CD200 and neurociliary protein-1 may be involved in the pathogenesis of POI.

2.
Adv Sci (Weinh) ; : e2402892, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757555

ABSTRACT

Rechargeable Li-CO2 batteries are considered as a promising carbon-neutral energy storage technology owing to their ultra-high energy density and efficient CO2 capture capability. However, the sluggish CO2 reduction/evolution kinetics impedes their practical application, which leads to huge overpotentials and poor cyclability. Multi-element transit metal oxides (TMOs) are demonstrated as effective cathodic catalysts for Li-CO2 batteries. But there are no reports on the integration of defect engineering on multi-element TMOs. Herein, the oxygen vacancy-bearing Li-Ni-Co-Mn multi-oxide (Re-NCM-H3) catalyst with the α-NaFeO2-type structure is first fabricated by annealing the NiCoMn precursor that derived from spent ternary LiNi0.8Co0.1Mn0.1O2 cathode, in H2 at 300 °C. As demonstrated by experimental results and theory calculations, the introduction of moderate oxygen vacancy has optimized electronic state near the Fermi level (Ef), eventually improving CO2 adsorption and charge transfer. Therefore, the Li-CO2 batteries with Re-NCM-H3 catalyst deliver a high capacity (11808.9 mAh g-1), a lower overpotential (1.54 V), as well as excellent stability over 216 cycles at 100 mA g-1 and 165 cycles at 400 mA g-1. This study not only opens up a sustainable application of spent ternary cathode, but also validates the potential of multi-element TMO catalysts with oxygen defects for high-efficiency Li-CO2 batteries.

3.
J Clin Invest ; 134(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38747287

ABSTRACT

Lymphedema is a debilitating disease with no effective cure and affects an estimated 250 million individuals worldwide. Prior studies have identified mutations in piezo-type mechanosensitive ion channel component 1 (PIEZO1), angiopoietin 2 (ANGPT2), and tyrosine kinase with Ig-like and EGF-like domains 1 (TIE1) in patients with primary lymphedema. Here, we identified crosstalk between these molecules and showed that activation of the mechanosensory channel PIEZO1 in lymphatic endothelial cells (LECs) caused rapid exocytosis of the TIE ligand ANGPT2, ectodomain shedding of TIE1 by disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), and increased TIE/PI3K/AKT signaling, followed by nuclear export of the transcription factor FOXO1. These data establish a functional network between lymphedema-associated genes and provide what we believe to be the first molecular mechanism bridging channel function with vascular signaling and intracellular events culminating in transcriptional regulation of genes expressed in LECs. Our study provides insights into the regulation of lymphatic function and molecular pathways involved in human disease.


Subject(s)
Angiopoietin-2 , Forkhead Box Protein O1 , Ion Channels , Lymphangiogenesis , Lymphedema , Receptor, TIE-1 , Signal Transduction , Ion Channels/metabolism , Ion Channels/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Humans , Animals , Angiopoietin-2/metabolism , Angiopoietin-2/genetics , Lymphedema/metabolism , Lymphedema/genetics , Lymphedema/pathology , Mice , Lymphangiogenesis/genetics , Receptor, TIE-1/metabolism , Receptor, TIE-1/genetics , Endothelial Cells/metabolism , Mechanotransduction, Cellular , ADAM17 Protein/metabolism , ADAM17 Protein/genetics
4.
Coron Artery Dis ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767051

ABSTRACT

BACKGROUND: Previous reports have suggested that coronary computed tomography angiography (CCTA)-based radiomics analysis is a potentially helpful tool for assessing vulnerable plaques. We aimed to investigate whether coronary radiomic analysis of CCTA images could identify vulnerable plaques in patients with stable angina pectoris. METHODS: This retrospective study included patients initially diagnosed with stable angina pectoris. Patients were randomly divided into either the training or test dataset at an 8 : 2 ratio. Radiomics features were extracted from CCTA images. Radiomics models for predicting vulnerable plaques were developed using the support vector machine (SVM) algorithm. The model performance was assessed using the area under the curve (AUC); the accuracy, sensitivity, and specificity were calculated to compare the diagnostic performance using the two cohorts. RESULTS: A total of 158 patients were included in the analysis. The SVM radiomics model performed well in predicting vulnerable plaques, with AUC values of 0.977 and 0.875 for the training and test cohorts, respectively. With optimal cutoff values, the radiomics model showed accuracies of 0.91 and 0.882 in the training and test cohorts, respectively. CONCLUSION: Although further larger population studies are necessary, this novel CCTA radiomics model may identify vulnerable plaques in patients with stable angina pectoris.

5.
Adv Sci (Weinh) ; : e2403867, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773950

ABSTRACT

Artificial micro/nanomotors using active particles hold vast potential in applications such as drug delivery and microfabrication. However, upgrading them to micro/nanorobots capable of performing precise tasks with sophisticated functions remains challenging. Bubble microthruster (BMT) is introduced, a variation of the bubble-driven microrobot, which focuses the energy from a collapsing microbubble to create an inertial impact on nearby target microparticles. Utilizing ultra-high-speed imaging, the microparticle mass and density is determined with sub-nanogram resolution based on the relaxation time characterizing the microparticle's transient response. Master curves of the BMT method are shown to be dependent on the viscosity of the solution. The BMT, controlled by a gamepad with magnetic-field guidance, precisely manipulates target microparticles, including bioparticles. Validation involves measuring the polystyrene microparticle mass and hollow glass microsphere density, and assessing the mouse embryo mass densities. The BMT technique presents a promising chip-free, real-time, highly maneuverable strategy that integrates bubble microrobot-based manipulation with precise bioparticle mass and density detection, which can facilitate microscale bioparticle characterizations such as embryo growth monitoring.

6.
Biomed Pharmacother ; 175: 116727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733771

ABSTRACT

Myelodysplastic syndromes (MDS) encompass a collection of clonal hematopoietic malignancies distinguished by the depletion of peripheral blood cells. The treatment of MDS is hindered by the advanced age of patients, with a restricted repertoire of drugs currently accessible for therapeutic intervention. In this study, we found that ES-Cu strongly inhibited the viability of MDS cell lines and activated cuproptosis in a copper-dependent manner. Importantly, ferroptosis inducer IKE synergistically enhanced ES-Cu-mediated cytotoxicity both in vitro and in vivo. Of note, the combination of IKE and ES-Cu intensively impaired mitochondrial homeostasis with increased mitochondrial ROS, MMP hyperpolarized, down-regulated iron-sulfur proteins and declined oxygen consumption rate. Additionally, ES-Cu/IKE treatment could enhance the lipoylation-dependent oligomerization of the DLAT. To elucidate the specific order of events in the synergistic cell death, inhibitors of ferroptosis and cuproptosis were utilized to further characterize the basis of cell death. Cell viability assays showed that the glutathione and its precursor N-acetylcysteine could significantly rescue the cell death under either mono or combination treatment, demonstrating that GSH acts at the crossing point in the regulation network of cuproptosis and ferroptosis. Significantly, the reconstitution of xCT expression and knockdown of FDX1 cells have been found to contribute to the tolerance of mono treatment but have little recovery impact on the combined treatment. Collectively, these findings suggest that a synergistic interaction leading to the induction of multiple programmed cell death pathways could be a promising approach to enhance the effectiveness of therapy for MDS.


Subject(s)
Copper , Drug Synergism , Ferroptosis , Myelodysplastic Syndromes , Ferroptosis/drug effects , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism , Humans , Animals , Copper/chemistry , Copper/metabolism , Piperazines/pharmacology , Mice , Cell Survival/drug effects , Imidazoles/pharmacology , Reactive Oxygen Species/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line, Tumor , Glutathione/metabolism
7.
J Affect Disord ; 358: 270-282, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38723681

ABSTRACT

OBJECTIVE: Ganoderic Acid A (GAA), a primary bioactive component in Ganoderma, has demonstrated ameliorative effects on depressive-like behaviors in a Chronic Social Defeat Stress (CSDS) mouse model. This study aims to elucidate the underlying molecular mechanisms through proteomic analysis. METHODS: C57BL/6 J mice were allocated into control (CON), chronic social defeat stress (CSDS), GAA, and imipramine (IMI) groups. Post-depression induction via CSDS, the GAA and IMI groups received respective treatments of GAA (2.5 mg/kg) and imipramine (10 mg/kg) for five days. Behavioral assessments utilized standardized tests. Proteins from the prefrontal cortex were analyzed using LC-MS, with further examination via bioinformatics and PRM for differential expression. Western blot analysis confirmed protein expression levels. RESULTS: Chronic social defeat stress (CSDS) induced depressive-like behaviors in mice, which were significantly alleviated by GAA treatment, comparably to imipramine (IMI). Proteomic analysis identified distinct proteins in control (305), GAA-treated (949), and IMI-treated (289) groups. Enrichment in mitochondrial and synaptic proteins was evident from GO and PPI analyses. PRM analysis revealed significant expression changes in proteins crucial for mitochondrial and synaptic functions (namely, Naa30, Bnip1, Tubgcp4, Atxn3, Carmil1, Nup37, Apoh, Mrpl42, Tprkb, Acbd5, Dcx, Erbb4, Ppp1r2, Fam3c, Rnf112, and Cep41). Western blot validation in the prefrontal cortex showed increased levels of Mrpl42, Dcx, Fam3c, Ppp1r2, Rnf112, and Naa30 following GAA treatment. CONCLUSION: GAA exhibits potential antidepressant properties, with its action potentially tied to the modulation of synaptic functions and mitochondrial activities.


Subject(s)
Behavior, Animal , Depression , Disease Models, Animal , Lanosterol , Mice, Inbred C57BL , Prefrontal Cortex , Proteomics , Social Defeat , Stress, Psychological , Animals , Mice , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Depression/drug therapy , Depression/metabolism , Male , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Behavior, Animal/drug effects , Lanosterol/analogs & derivatives , Lanosterol/pharmacology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Imipramine/pharmacology , Doublecortin Protein , Heptanoic Acids
8.
Huan Jing Ke Xue ; 45(5): 2631-2639, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629527

ABSTRACT

The landscape pattern determines water pollution source and sink processes and plays an important role in regulating river water quality. Due to scale effects, studies on the relationship between landscape pattern and river water quality showed variance at different scales. However, there is still a lack of integrated study on the scale effect of landscape pattern and river water quality dynamics. This study collected 4 041 data from results of previous publications to address the characteristics of landscape pattern and river water quality dynamics at different scales and to identify the key temporal and spatial scales as well as landscape pattern indices for regulating river water quality. The results indicated that, compared to precipitation events, base flow periods, and interannual scales, the high-flow period was the key temporal scale for linking landscape pattern on river water quality. Compared to the watershed scale, the landscape pattern of buffer zones had a greater impact on river water quality. The high-flow period-buffer zone scale was the key spatiotemporal coupling scale for linking landscape pattern and river water quality. Compared to croplands, water bodies, grasslands, and the overall landscape of the watershed, the landscape pattern of forests and urban areas had a greater impact on river water quality. Fragmentation degree was the most important landscape pattern factor regulating river water quality. In river water quality management, it is important to focus on the landscape configuration of buffer zones, increase forest area, reduce patch density of forests and water bodies, and decrease the aggregation degree of urban areas.

9.
Membranes (Basel) ; 14(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38668106

ABSTRACT

Pervaporation is an energy-efficient alternative to conventional distillation for water/alcohol separations. In this work, a novel CHA zeolite membrane with an increased Si/Al ratio was synthesized in the absence of organic templates for the first time. Nanosized high-silica zeolite (SSZ-13) seeds were used for the secondary growth of the membrane. The separation performance of membranes in different alcohol-aqueous mixtures was measured. The effects of water content in the feed and the temperature on the separation performance using pervaporation and vapor permeation were also studied. The best membrane showed a water/ethanol separation factor above 100,000 and a total flux of 1.2 kg/(m2 h) at 348 K in a 10 wt.% water-ethanol mixed solution. A membrane with high performance and an increased Si/Al ratio is promising for the application of alcohol dehydration.

10.
Vet J ; 305: 106124, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38653339

ABSTRACT

Respiratory diseases due to viral or bacterial agents, either alone or in combination, cause substantial economic burdens to the swine industry worldwide. Rapid and reliable detection of causal pathogens is crucial for effective epidemiological surveillance and disease management. This research aimed to employ the multiplex ligation-dependent probe amplification (MLPA) assay for simultaneous detection of seven distinct pathogens causing respiratory problems in swine, porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), porcine respiratory coronavirus (PRCV), porcine circovirus type 2 (PCV2), Pasteurella multocida, Actinobacillus pleuropneumoniae, and Glässerella parasuis. The results indicated no probe cross-reactivity among the seven target agents with other swine pathogens. The detection limits ranged from 5 to 34 copies per assay for the target organisms. The MLPA assay was evaluated with 88 samples and compared to real-time or multiplex PCR for the target pathogens. The MLPA assay demonstrated high relative test sensitivities (100 %) and reasonable to good relative specificities at 62.5 %, 95.1 %, 86.8 %, and 97.6 % for PRRSV, P. multocida, G. parasuis, and PCV2, respectively, relative to comparator PCR assays. In 71 samples where MLPA and comparator PCR assays matched exactly, infections were detected in 64 samples (90.1 %), with PRRSV being the most commonly found virus and 50.7 % of the samples showing co-infection with two to five of the pathogens. This approach serves as a valuable tool for conducting differential diagnoses and epidemiological investigations of pathogen prevalence within swine populations.

11.
ACS Omega ; 9(13): 15502-15510, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585135

ABSTRACT

To investigate the influence of pressure difference changes on the micro start-up and percolation of heavy oil, a micro visualization displacement device was used to characterize the start-up time and oil-water percolation state of heavy oil. The mechanism of different pressure differences, as well as the frequency and amplitude of pressure difference changes, on the start-up and percolation balance of heavy oil was clarified. The results indicate that high-pressure difference and pressure difference changes can reduce the start-up time of heavy oil. A reasonable frequency of pressure difference changes effectively promotes the balance between positive and negative pressure shear and fluid-solid response. Large pressure difference changes can effectively break the viscous and adsorption resistance during heavy oil start-up; reasonable pressure difference can exert the synergistic effect of pressure difference and infiltration, achieving a balance between the water wave and the initial water film thickening process as well as the continuous percolation process of wire drawing, oil droplets, and oil columns during the medium-to-high water content period; a reasonable frequency of pressure difference variation during the high water content period can promote the superposition of inertia effects at the oil-water interface and break the balance of the oil-water interface. A large amplitude of pressure difference variation is beneficial for the strong deformation of the oil-water interface and the shear dislocation peeling of the oil-solid interface. Therefore, a relatively high amplitude of pressure difference variation and a reasonable frequency of pressure difference variation, as well as the synergistic effect of pressure difference and infiltration, are the keys to effectively start heavy oil and improving oil recovery during the ultrahigh water-cut period.

12.
Cell Mol Biol Lett ; 29(1): 53, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616283

ABSTRACT

Reactive oxygen species (ROS) serve as typical metabolic byproducts of aerobic life and play a pivotal role in redox reactions and signal transduction pathways. Contingent upon their concentration, ROS production not only initiates or stimulates tumorigenesis but also causes oxidative stress (OS) and triggers cellular apoptosis. Mounting literature supports the view that ROS are closely interwoven with the pathogenesis of a cluster of diseases, particularly those involving cell proliferation and differentiation, such as myelodysplastic syndromes (MDS) and chronic/acute myeloid leukemia (CML/AML). OS caused by excessive ROS at physiological levels is likely to affect the functions of hematopoietic stem cells, such as cell growth and self-renewal, which may contribute to defective hematopoiesis. We review herein the eminent role of ROS in the hematological niche and their profound influence on the progress of MDS. We also highlight that targeting ROS is a practical and reliable tactic for MDS therapy.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Myelodysplastic Syndromes , Humans , Reactive Oxygen Species , Oxidative Stress , Apoptosis , Carcinogenesis
13.
Small ; : e2401664, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651220

ABSTRACT

Cellulose nanocrystal (CNC), as a renewable resource, with excellent mechanical performance, low thermal expansion coefficient, and unique optical performance, is becoming a novel candidate for the development of smart material. Herein, the recent progress of CNC-based chirality nanomaterials is uncovered, mainly covering structure regulations and function design. Undergoing a simple evaporation process, the cellulose nanorods can spontaneously assemble into chiral nematic films, accompanied by a vivid structural color. Various film structure-controlling strategies, including assembly means, physical modulation, additive engineering, surface modification, geometric structure regulation, and external field optimization, are summarized in this work. The intrinsic correlation between structure and performance is emphasized. Next, the applications of CNC-based nanomaterials is systematically reviewed. Layer-by-layer stacking structure and unique optical activity endow the nanomaterials with wide applications in the mineralization, bone regeneration, and synthesis of mesoporous materials. Besides, the vivid structural color broadens the functions in anti-counterfeiting engineering, synthesis of the shape-memory and self-healing materials. Finally, the challenges for the CNC-based nanomaterials are proposed.

14.
Article in English | MEDLINE | ID: mdl-38676558

ABSTRACT

AIM: Knowledge of how circadian rhythm influences brain health remains limited. We aimed to investigate the associations of accelerometer-measured circadian rest-activity rhythm (CRAR) with incident dementia, cognitive dysfunction, and structural brain abnormalities in the general population and underlying biological mechanisms. METHODS: Fifty-seven thousand five hundred and two participants aged over 60 years with accelerometer data were included to investigate the association of CRAR with incidental dementia. Non-parametric CRAR parameters were utilized, including activity level during active periods of the day (M10), activity level during rest periods of the day (L5), and the relative difference between the M10 and L5 (relative amplitude, RA). Associations of CRAR with cognitive dysfunction and brain structure were studied in a subset of participants. Neuroimaging-transcriptomics analysis was utilized to identify the underlying molecular mechanisms. RESULTS: Over 6.86 (4.94-8.78) years of follow-up, 494 participants developed dementia. The risk of incident dementia was associated with decreasing M10 (hazard ratio [HR] 1.45; 95% conference interval [CI], 1.28-1.64) and RA (HR 1.37; 95% CI, 1.28-1.64), increasing L5 (HR 1.14, 95% CI 1.07-1.21) and advanced L5 onset time (HR 1.12; 95% CI, 1.02-1.23). The detrimental associations were exacerbated by APOE ε4 status and age (>65 years). Decreased RA was associated with lower processing speed (Beta -0.04; SE 0.011), predominantly mediated by abnormalities in subcortical regions and white matter microstructure. The genes underlying CRAR-related brain regional structure variation were enriched for synaptic function. CONCLUSIONS: Our study underscores the potential of intervention targeting at maintaining a healthy CRAR pattern to prevent dementia risk.

15.
Spine J ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38583576

ABSTRACT

BACKGROUND CONTEXT: Adolescent idiopathic scoliosis (AIS) necessitates accurate spinal curvature assessment for effective clinical management. Traditional two-dimensional (2D) Cobb angle measurements have been the standard, but the emergence of three-dimensional (3D) automatic measurement techniques, such as those using weight-bearing 3D imaging (WR3D), presents an opportunity to enhance the accuracy and comprehensiveness of AIS evaluation. PURPOSE: This study aimed to compare traditional 2D Cobb angle measurements with 3D automatic measurements utilizing the WR3D imaging technique in patients with AIS. STUDY DESIGN/SETTING: A cohort of 53 AIS patients was recruited, encompassing 88 spinal curves, for comparative analysis. PATIENT SAMPLE: The patient sample consisted of 53 individuals diagnosed with AIS. OUTCOME MEASURES: Cobb angles were calculated using the conventional 2D method and three different 3D methods: the Analytical Method (AM), the Plane Intersecting Method (PIM), and the Plane Projection Method (PPM). METHODS: The 2D cobb angle was manually measured by 3 experienced clinicians with 2D frontal whole-spine radiographs. For 3D cobb angle measurements, the spine and femoral heads were segmented from the WR3D images using a 3D-UNet deep-learning model, and the automatic calculations of the angles were performed with the 3D slicer software. RESULTS: AM and PIM estimates were found to be significantly larger than 2D measurements. Conversely, PPM results showed no statistical difference compared to the 2D method. These findings were consistent in a subgroup analysis based on 2D Cobb angles. CONCLUSION: Each 3D measurement method provides a unique assessment of spinal curvature, with PPM offering values closely resembling 2D measurements, while AM and PIM yield larger estimations. The utilization of WR3D technology alongside deep learning segmentation ensures accuracy and efficiency in comparative analyses. However, additional studies, particularly involving patients with severe curves, are required to validate and expand on these results. This study emphasizes the importance of selecting an appropriate measurement method considering the imaging modality and clinical context when assessing AIS, and it also underlines the need for continuous refinement of these techniques for optimal use in clinical decision-making and patient management.

16.
Front Public Health ; 12: 1326272, 2024.
Article in English | MEDLINE | ID: mdl-38680927

ABSTRACT

Introduction: The hierarchical healthcare delivery system is an important measure to improve the allocation of medical resources and promote equitable distribution of basic medical and health services. It is one of the key factors in the success or failure of China's medical reform. This study aims to analyze the factors influencing patients' healthcare-seeking behaviors, including socioeconomic and clinical outcomes, under China's hierarchical healthcare delivery system, and to provide potential solutions. Methods: Patients receiving outpatient treatment in the past 14 days and inpatient care in the past 1 year were investigated. The multivariate logistic regression was used to analyze the influencing factors of patient's medical treatment behavior selection, and to compare whether the clinical outcomes of primary medical institutions and grade A hospitals are the same. Results: Nine thousand and ninety-eight person-times were included in the study. Of these, 4,538 patients were outpatients, 68.27% of patients were treated in primary medical institutions; 4,560 patients were hospitalized, 58.53% chose to be hospitalized in grade A hospitals. Provinces and cities, urban and rural areas, occupation, education level, medical insurance type, income, whether there are comorbid diseases, and doctors' medical behavior are the factors affecting the choice of medical treatment behavior. Patients who choose primary medical institutions and grade A hospitals have different control levels and control rate for the blood pressure, blood lipids, blood glucose. Conclusion: Under the hierarchical diagnosis and treatment system, the patients' choice of hospital is mainly affected by their level of education, medical insurance types, and the inpatients are also affected by whether there are comorbid conditions. Clinical outcomes of choosing different levels of hospitals were different.


Subject(s)
Delivery of Health Care , Patient Acceptance of Health Care , Humans , China , Female , Male , Middle Aged , Patient Acceptance of Health Care/statistics & numerical data , Adult , Delivery of Health Care/statistics & numerical data , Aged , Socioeconomic Factors , Adolescent , Young Adult , Logistic Models
17.
Hypertension ; 81(4): 906-916, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38465593

ABSTRACT

BACKGROUND: Gray matter (GM) and white matter (WM) impairments are both associated with raised blood pressure (BP), although whether elevated BP is differentially associated with the GM and WM aging process remains inadequately examined. METHODS: We included 37 327 participants with diffusion-weighted imaging (DWI) and 39 630 participants with T1-weighted scans from UK Biobank. BP was classified into 4 categories: normal BP, high-normal BP, grade 1, and grade 2 hypertension. Brain age gaps (BAGs) for GM (BAGGM) and WM (BAGWM) were derived from diffusion-weighted imaging and T1 scans separately using 3-dimensional-convolutional neural network deep learning techniques. RESULTS: There was an increase in both BAGGM and BAGWM with raised BP (P<0.05). BAGWM was significantly larger than BAGGM at high-normal BP (0.195 years older; P=0.006), grade 1 hypertension (0.174 years older; P=0.004), and grade 2 hypertension (0.510 years older; P<0.001), but not for normal BP. Mediation analysis revealed that the association between hypertension and cognitive decline was primarily mediated by WM impairment. Mendelian randomization analysis suggested a causal relationship between hypertension and WM aging acceleration (unstandardized B, 1.780; P=0.016) but not for GM (P>0.05). Sliding-window analysis indicated the association between hypertension and brain aging acceleration was moderated by chronological age, showing stronger correlations in midlife but weaker associations in the older age. CONCLUSIONS: Compared with GM, WM was more vulnerable to raised BP. Our study provided compelling evidence that concerted efforts should be directed towards WM damage in individuals with hypertension in clinical practice.


Subject(s)
Hypertension , White Matter , Humans , Aged , White Matter/diagnostic imaging , Cohort Studies , Blood Pressure , UK Biobank , Biological Specimen Banks , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Aging , Hypertension/epidemiology
18.
Int Ophthalmol ; 44(1): 153, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509410

ABSTRACT

PURPOSE: This study aimed to measure the Raman spectrum of the human corneal stroma lens obtained from small incision lenticule extraction surgery (SMILE) in Asian myopic eyes using a confocal Raman micro-spectrometer built in the laboratory. METHODS: Forty-three myopic patients who underwent SMILE with equivalent diopters between - 4.00 and - 6.00 D were selected, and the right eye data were collected. Corneal stroma lenses were obtained during surgery, and the Raman spectra were measured after air drying. The complete Raman spectrum of human myopic corneal stroma lens tissue was obtained within the range of 700-4000 cm-1. RESULTS: Thirteen characteristic peaks were found, with the stronger peaks appearing at 937 cm-1, corresponding to proline, valine, and the protein skeleton of the human myopic corneal stroma lens; 1243 cm-1, corresponding to collagen protein; 1448 cm-1, corresponding to the collagen protein and phospholipids; and 2940 cm-1, corresponding to the amino acid and lipids, which was the strongest Raman peak. CONCLUSION: These results demonstrated that Raman spectroscopy has much potential as a fast, cost-effective, and reliable diagnostic tool in the diagnosis and treatment of eye diseases, including myopia, keratoconus, and corneal infection.


Subject(s)
Corneal Surgery, Laser , Keratomileusis, Laser In Situ , Myopia , Humans , Corneal Stroma/surgery , Visual Acuity , Myopia/diagnosis , Myopia/surgery , Keratomileusis, Laser In Situ/methods , Collagen , Lasers, Excimer , Refraction, Ocular
19.
Schizophr Res Cogn ; 36: 100306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38469136

ABSTRACT

Deficits in executive control of attention have been reported in schizophrenia patients, but can be ameliorated by treatment of atypical antipsychotics along with the symptoms. However, it remains unclear whether this effect is related to a modulation of hemispheric asymmetry in executive control by the medicine. In this behavioral study, we employed a lateralized version of the attention network test to examine the hemispheric asymmetry of executive control in schizophrenia patients before and after olanzapine treatment, compared to matched healthy controls. Executive control was measured as a conflict effect, indexed as the response time (RT) difference between incongruent versus congruent flanker conditions, and was compared between stimuli presented in the left and the right visual field (i.e., processed by right versus left hemisphere of the brain). Results showed that pre-treatment schizophrenia patients revealed a right hemisphere superiority in conflict effect (i.e., a smaller effect in the right hemisphere than in the left hemisphere), driven by the incongruent condition. Olanzapine treatment reduced this right hemisphere superiority by improving the efficiency of the left hemisphere in the incongruent condition. These results suggested that olanzapine treatment may improve the efficiency of executive control in the left hemisphere in schizophrenia patients.

20.
Ultrason Sonochem ; 105: 106856, 2024 May.
Article in English | MEDLINE | ID: mdl-38554530

ABSTRACT

The residue remaining after oil extraction from grape seed contain abundant procyanidins. An ultrasonic-assisted enzyme method was performed to achieve a high extraction efficiency of procyanidins when the optimal extraction conditions were 8 U/g of cellulase, ultrasound power of 200 W, ultrasonic temperature of 50 ℃, and ultrasonic reaction time of 40 min. The effects of free procyanidins on both radical scavenging activity and thermal stability at 40, 60, and 80 ℃ of the procyanidins-loaded liposomal systems prepared by the ultrasonic-assisted method were discussed. The presence of procyanidins at concentrations ranging from 0.02 to 0.10 mg/mL was observed to be effective at inhibiting lipid oxidation by 15.15 % to 69.70 % in a linoleic acid model system during reaction for 168 h, as measured using the ferric thiocyanate method. The procyanidins-loaded liposomal systems prepared by the ultrasonic-assisted method were characterized by measuring the mean particle size and encapsulation efficiency. Moreover, the holographic plots showed that the effect-response points of procyanidins combined with α-tocopherol in liposomes were lower than the addition line and 95 % confidence interval limits. At the same time, there were significant differences between the theoretical IC50add value and the experimental IC50mix value. The interaction index (γ) of all combinations was observed to be less than 1. These results indicated that there was a synergistic antioxidant effect between procyanidins combined with α-tocopherol, which will show promising prospects in practical applications. In addition, particle size differentiation and morphology agglomeration were observed at different time points of antioxidant activity determination (0, 48, 96 h).


Subject(s)
Antioxidants , Liposomes , Proanthocyanidins , Proanthocyanidins/isolation & purification , Proanthocyanidins/chemistry , Liposomes/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Ultrasonic Waves , Vitis/chemistry , Grape Seed Extract/chemistry , Chemical Fractionation/methods , Particle Size , Temperature , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...