Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Appl Biochem ; 68(1): 30-40, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31957084

ABSTRACT

The chitinase-producing bacteria Paenibacillus sp. was isolated from soil samples. The chitinase was purified successively by ammonia sulfate fractional precipitation followed by chromatography on DEAE 52-cellulose column and then on Sephadex G-75 column. The chitinase has a molecular weight of ca. 30 kDa as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) electrophoresis. Its optimum pH is 4.5, and its optimum temperature is 50 °C with colloidal chitin as a substrate. The enzyme is stable below 45 °C and in pH ranges between 4.5 and 5.5. It is activated by glucosamine, glucose, N-acetylglucosamine, and metal ions including Ca2+ , Fe2+ , Fe3+ , and Ni2+ . It is inhibited by SDS, H2 O2 , ascorbic acid, Cu2+ , Mg2+ , Ba2+ , Sn2+ , Cr3+ , and K+ . With colloidal chitin as substrate, the Km and the Vmax of the chitinase are 4.28 mg/mL and 14.29 µg/(Min·mL), respectively, whereas the end products of the enzymatic hydrolysis are 14.33% monomer and 85.67% dimer of N-acetylglucosamine. The viscosity of carboxymethyl chitin decreased rapidly at the initial stages when subjected to chitinase hydrolysis, which indicates that the chitinase acts in an endosplitting pattern.


Subject(s)
Bacterial Proteins , Chitinases , Paenibacillus/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Chitinases/chemistry , Chitinases/isolation & purification , Enzyme Stability
2.
J Agric Food Chem ; 64(12): 2591-603, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-26978261

ABSTRACT

The bacterial community and the metabolic activities involved at the flavor-forming stage during the fermentation of shrimp sauce were investigated using metatranscriptome and 16S rRNA gene sequencings. Results showed that the abundance of Tetragenococcus was 95.1%. Tetragenococcus halophilus was identified in 520 of 588 transcripts annotated in the Nr database. Activation of the citrate cycle and oxidative phosphorylation, along with the absence of lactate dehydrogenase gene expression, in T. halophilus suggests that T. halophilus probably underwent aerobic metabolism during shrimp sauce fermentation. The metabolism of amino acids, production of peptidase, and degradation of limonene and pinene were very active in T. halophilus. Carnobacterium, Pseudomonas, Escherichia, Staphylococcus, Bacillus, and Clostridium were also metabolically active, although present in very small populations. Enterococcus, Abiotrophia, Streptococcus, and Lactobacillus were detected in metatranscriptome sequencing, but not in 16S rRNA gene sequencing. Many minor taxa showed no gene expression, suggesting that they were in dormant status.


Subject(s)
Enterococcaceae/genetics , RNA, Ribosomal, 16S/genetics , Animals , Bicyclic Monoterpenes , Cyclohexenes/metabolism , Limonene , Monoterpenes/metabolism , Peptide Hydrolases/metabolism , Shellfish , Terpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...