Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 21403, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049440

ABSTRACT

The orchid family has 200,000 species and 700 genera, and it is found worldwide in the tropics and subtropics. In China, there are 1247 species and subspecies of orchids belonging to the Orchidaceae family. Orchidaceae is one of the most diverse plant families in the world, known for their lush look, remarkable ecological tolerance, and capability for reproduction. It has significant decorative and therapeutic value. In terms of evolution, the orchid family is one of the more complicated groups, but up until now, little has been known about its affinities. This study examined the properties of 19 chloroplast (cp) genomes, of which 11 had previously been published and nine had only recently been revealed. Following that, topics such as analysis of selection pressure, codon usage, amino acid frequencies, repeated sequences, and reverse repeat contraction and expansion are covered. The Orchidaceae share similar cp chromosomal characteristics, and we have conducted a preliminary analysis of their evolutionary connections. The cp genome of this family has a typical tepartite structure and a high degree of consistency across species. Platanthera urceolata with more tandem repeats of the cp genome. Similar cp chromosomal traits can be seen in the orchidaceae. Galearis roborowskyi, Neottianthe cucullata, Neottianthe monophylla, Platanthera urceolata and Ponerorchis compacta are the closest cousins, according to phylogenetic study.


Subject(s)
Genome, Chloroplast , Orchidaceae , Phylogeny , Repetitive Sequences, Nucleic Acid , Chloroplasts/genetics
2.
ACS Appl Mater Interfaces ; 15(46): 53738-53745, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37948757

ABSTRACT

High-resolution liquid crystal display (LCD) backlight requires a color conversion layer featuring micrometer light-emitting particles and a uniform morphology. The widely used commercial red-emitting K2SiF6:Mn4+ phosphor, showing promise as a light-conversion candidate, faces limitations due to its toxic synthesis process, large particle size, and poor moisture resistance. We successfully demonstrated an efficient substitution of the highly toxic HF/TEOS/KHF2 solvent system with a commonly used HCl/SiO2/KF solvent system to synthesize the small-sized K2SiF6:Mn4+ phosphor. Additionally, surface passivation was performed to enhance the luminescence intensity and resistance to moisture, denoted as K2SiF6:Mn4+@CaF2. Accordingly, the K2SiF6:Mn4+@CaF2 phosphor presents a high luminescence efficiency (99.87%/32.84% IQE/EQE) with an average particle size of ∼2.67 µm. Notably, after exposure to 85% humidity and 85 °C temperature for 3 h, the luminescence intensity remains at 47.4% for K2SiF6:Mn4+@CaF2, while 21.2% for pristine K2SiF6:Mn4+, and only 3.5% for K2SiF6:Mn4+ synthesized by TEOS. These advancements hold great potential for improving high-resolution LCD backlighting, particularly for displays with micron-level pixels, opening up new possibilities for enhanced display technology.

3.
Light Sci Appl ; 12(1): 181, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37488126

ABSTRACT

The increasing demand for high-contrast biological imaging, non-destructive testing, and infrared night vision can be addressed by the development of high-performance NIR light-emitting materials. Unlike lanthanide (Ln3+) with sharp-line multiplets and isolated Cr3+ with NIR-I emission, this study reports the first-ever NIR-II broadband luminescence based on the intervalence charge transfer (IVCT) of Cr3+-Cr3+ aggregation in gallate magentoplumbite. In particular, LaMgGa11O19:0.7Cr3+ exhibits dual-emission (NIR-I, 890 nm and NIR-II, 1200 nm) with a full width at half maximum (FWHM) of 626 nm under 450 nm blue LED excitation. Moreover, this dual-emission exhibits anti-thermal quenching behavior (432% @ 290 K), attributed to the energy transfer among multiple Cr3+ centers. Cryogen absorption spectra, lifetimes decay (2.3 ms), and electron paramagnetic experiments reveal the NIR-II luminescence of the Cr3+-Cr3+ → Cr2+-Cr4+ IVCT transition. The application of LaMgGa11O19:0.7Cr3+ in NIR-II biological imaging as an optical contrast agent, non-destructive testing, and night vision is demonstrated. This work provides new insights into broadband NIR-II luminescence under UV-NIR excitation based on the IVCT of Cr3+-Cr3+ aggregation.

4.
Water Res ; 45(3): 1238-46, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21030060

ABSTRACT

The inhibitory effect and biodegradation of benzalkonium chloride (BAC), a mixture of alkyl benzyl dimethyl ammonium chlorides with different alkyl chain lengths, was investigated at a concentration range from 5 to 20 mg/L and different biomass concentrations in an activated sludge system. A solution containing glucose and mineral salts was used as the wastewater in all the assays performed. The inhibition of respiratory enzymes was identified as the mode of action of BAC as a result of oxygen uptake rate analysis performed at BAC concentrations ranging between 5 and 70 mg/L. The glucose degradation in the activated sludge at different BAC and biomass concentrations was well-described with Monod kinetics with competitive inhibition. The half-saturation inhibition constant (K(I)) which is equivalent to EC(50) of BAC for the activated sludge tested ranged between 0.12 and 3.60 mg/L. The high K(I) values were recorded at low BAC-to-biomass ratios, i.e. less than 10 mg BAC/g VSS, at which BAC was almost totally adsorbed to biomass and not bioavailable. BAC degradation started as soon as glucose was totally consumed. Although BAC was almost totally adsorbed on the biomass, it was degraded completely. Therefore, BAC degradation was modeled using two-phase biodegradation kinetics developed in this study. This model involves rapid partitioning of BAC to biomass and consecutive degradation in both aqueous and solid phases. The aqueous phase BAC degradation rate was twenty times, on average, higher than the solid phase degradation rate. The specific aqueous (k(I1)) and solid (k(I2)) phase BAC utilization rate constants were 1.25 and 0.31 mg BAC/g VSS h, respectively. The findings of this study would help to understand the reason of extensive distribution of quaternary ammonium compounds in wastewater treatment plant effluents and in natural water systems although QACs are biodegradable, and develop strategies to avoid their release and accumulation in the environment.


Subject(s)
Benzalkonium Compounds/metabolism , Biodegradation, Environmental , Sewage , Benzalkonium Compounds/analysis , Biomass , Sewage/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...