Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 296: 113251, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34271356

ABSTRACT

Aquatic plants play effective in removing heavy metal (HM) as a prominent factor of bioremediations, however, there are still knowledge gaps in species selection and configuration for high removal efficiency (RE) of compound HM and ornamental value. In this study, seven emergent-aquatic-plant species were configured into seven groups and planted in a simulated swine wastewater (SW) with Cu, Zn, and Cd for 75 days in summer. REs of Cu, Zn, and Cd were 45.06-86.93%, 42.40-87.22%, and 73.85-85.52% at day 75, respectively. Higher REs were observed from day 30-45 for Cu and Zn, whereas days 15-30 for Cd. The synergistic removal of Zn and Cu or Zn and Cd was almost observed (p < 0.05). The configuration of G5 (S. tabernaemontani, I. sibirica, and P. cordata) was generally efficient roles in the removal at day 45, with REs of 85.14%, 87.06%, and 83.56% for Cu, Zn, and Cd, respectively. The dry weight of roots, water NH4+-N, temperature, pH, and dissolved oxygen acted on heavy-metal removal. During days 45-75, concentrations of Cu, Zn, and Cd in G5 were 0.52-0.66, 0.54-0.65, and 0.23-0.33 mg L-1. The former two were below the limits of Grade Ⅱ (1.0 mg L-1) and the latter was above the limits of Grade Ⅴ (0.1 mg L-1; GB3838-2002). Thus, G5 could be optimal for Cu and Zn removal from simulated SW, however, efficient Cd removal is required to ensure efficient SW recycling.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Animals , Cadmium , Metals, Heavy/analysis , Swine , Wastewater , Water Pollutants, Chemical/analysis , Zinc
2.
Ecotoxicol Environ Saf ; 213: 112032, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33582409

ABSTRACT

Swine wastewater (SW) treatment by Myriophyllum aquaticum is an important biotechnology for its resource utilization. However, some knowledge gaps remain in compound-pollutant removal in SW, especially in practical applications. To clarify the responses of M. aquaticum to the compound pollutants as well as the related operational parameters in SW treatment, three initial doses (0.5, 1.0, and 1.5 kg per pond in 150 L simulated SW) of M. aquaticum and a control (no plant; CK) were allocated to 12 ponds under a plastic roof in Nanjing city of Eastern China during 75 days in the summer of 2019. Results showed that M. aquaticum could be used as a pioneer plant to efficiently remove compounded pollutants of nitrogen (N), phosphorus (P), and especially for heavy metals in simulated SW. Compared with CK, M. aquaticum assisted in improving the total N, NH4+-N, NO3--N, NO2--N, and dissolved organic N by 30.1%, 100%, 100%, 97.6%, 20.2%, 39.8% whereas Cu, Zn, and Cd by 50.4%, 36.4% and 47.9% on average during the 75-day experiment in summer, respectively. Moreover, concentrations of Cu and Cd at day 75 were in the ranges of 1.92-2.82 and 0.64-1.47 g kg-1 DW, respectively, exceeding the corresponding limits of the heavy-metal hyperaccumulator. For the operational parameters, the optimized initial dose was 1.0 kg per pond with M. aquaticum harvested after 45 summer days, respectively. Given that M. aquaticum has been widely used as animal feed in recent years and limit values for Cu and Zn in animal feed are not set in China, the toxicities of Cu and Zn should be assessed and the guideline of their limit values needs to be established for safe feed production. Interestingly, NH4+-N could dominate the removal of heavy metals especially Cd in the simulated SW, however, related mechanisms are needed for further study.


Subject(s)
Metals, Heavy/analysis , Saxifragales/physiology , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Animals , China , Environmental Pollutants , Nitrogen/analysis , Nutrients , Phosphorus , Swine , Water Purification/methods
3.
Bull Environ Contam Toxicol ; 104(3): 380-385, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31932904

ABSTRACT

In this study, three soil amendments (inorganic, liming, or organic-inorganic materials) were used in a Cd-contaminated purple field soil to investigate their impacts on soil Cd availability, enzyme (urease, catalase, sucrase, and acid phosphatase) activities, microbial biomass (carbon/nitrogen) and type (bacteria, fungi, and actinomycetes) in mustard and corn trials. Results showed that soil amendments generally decreased soil exchangeable Cd, fungi and bacterial populations while increasing the activities of all the four soil enzymes tested, microbial biomass carbon and populations of actinomycetes (p < 0.05). Soil pH and microbial biomass nitrogen did not exhibit any significant response (p > 0.05) whereas stronger effects appeared in soil organic matter and available nutrients (nitrogen, phosphorous and potassium; p < 0.05). However, only soil available phosphorous significantly correlated with soil microbial activity in both mustard and corn trails (p < 0.05). Thus, application of phosphorous-containing amendments should be considered for promoting soil health in the remediation of the Cd-contaminated purple soils.


Subject(s)
Cadmium/analysis , Soil Microbiology , Soil Pollutants/analysis , Soil/chemistry , Bacteria/growth & development , Biomass , Calcium Compounds , Carbon/analysis , China , Environmental Pollution , Fungi/growth & development , Nitrogen/analysis , Oxides , Phosphorus/analysis , Urease/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...