Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38998357

ABSTRACT

Aiming at the problems of the large storage, complex composition, low comprehensive utilization rate, and high environmental impact of coal gangue, this paper carried out experimental research on the preparation of iron oxide red from high-iron gangue by calcination activation, acid leaching, extraction, and the hydrothermal synthesis of coal gangue. The experimental results show that when the calcination temperature of coal gangue is 500 °C, the calcination time is 1.5 h, the optimal concentration of iron removal is 6 mol/L, the acid leaching temperature is 80 °C, the acid leaching time is 1 h, and the liquid--solid mass ratio is 4:1; the iron dissolution rate can reach 87.64%. A solvent extraction method (TBP-SK-hydrochloric acid system) was used to extract the leachate, and a solution with iron content up to 99.21% was obtained. By controlling the optimum hydrothermal conditions (pH = 9, temperature 170 °C, reaction time 5 h), high-purity iron oxide red product can be prepared; the yield is 80.07%. The red iron oxide was characterized by XRD, SEM-EDS, particle-size analysis, and ICP-OES. The results show that the red iron oxide peak has a cubic microstructure, an average particle size of 167.16 µm, and a purity of 99.16%. The quality of the prepared iron oxide red product meets the requirement of 98.5% of the "YHT4 Iron oxide Standard for ferrite". It can be used as a raw material to produce high-performance soft magnetic ferrite. In summary, this experimental study on the preparation of iron oxide red from coal gangue is of great significance for the comprehensive utilization of coal gangue to realize the sustainable development of the environment and economy.

2.
Front Neurorobot ; 18: 1422960, 2024.
Article in English | MEDLINE | ID: mdl-38911603

ABSTRACT

In the tobacco industry, impurity detection is an important prerequisite for ensuring the quality of tobacco. However, in the actual production process, the complex background environment and the variability of impurity shapes can affect the accuracy of impurity detection by tobacco robots, which leads to a decrease in product quality and an increase in health risks. To address this problem, we propose a new online detection method of tobacco impurities for tobacco robot. Firstly, a BCFormer attention mechanism module is designed to effectively mitigate the interference of irrelevant information in the image and improve the network's ability to identify regions of interest. Secondly, a Dual Feature Aggregation (DFA) module is designed and added to Neck to improve the accuracy of tobacco impurities detection by augmenting the fused feature maps with deep semantic and surface location data. Finally, to address the problem that the traditional loss function cannot accurately reflect the distance between two bounding boxes, this paper proposes an optimized loss function to more accurately assess the quality of the bounding boxes. To evaluate the effectiveness of the algorithm, this paper creates a dataset specifically designed to detect tobacco impurities. Experimental results show that the algorithm performs well in identifying tobacco impurities. Our algorithm improved the mAP value by about 3.01% compared to the traditional YOLOX method. The real-time processing efficiency of the model is as high as 41 frames per second, which makes it ideal for automated inspection of tobacco production lines and effectively solves the problem of tobacco impurity detection.

3.
Sci Rep ; 13(1): 18953, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919314

ABSTRACT

As an important risk factor for many cardiovascular diseases, hypertension requires convenient and reliable methods for prevention and intervention. This study designed a visualization risk prediction system based on Machine Learning and SHAP as an auxiliary tool for personalized health management of hypertension. We used ten Machine Learning algorithms such as random forests and 1617 anonymized health check data to build ten hypertension risk prediction models. The model performance was evaluated through indicators such as accuracy, F1-score, and ROC curve. We used the best-performing model combined with the SHAP algorithm for feature importance analysis and built a visualization risk prediction system on the web page. The LightGMB model exhibited the best predictive performance, and age, alkaline phosphatase, and triglycerides were important features for predicting the risk of hypertension. Users can obtain their risk probability of hypertension and determine the focus of intervention through the visualization system built on the web page. Our research helps doctors and patients to develop personalized prevention and intervention programs for hypertension based on health check data, which has significant clinical and public health significance.


Subject(s)
Cardiovascular Diseases , Hypertension , Humans , Hypertension/diagnosis , Hypertension/epidemiology , Algorithms , Machine Learning , Risk Factors
4.
Materials (Basel) ; 16(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37570138

ABSTRACT

The discharge and accumulation of coal-based solid waste have caused great harm to the ecological environment recently. Coal-based solid wastes, such as coal gangue and fly ash, are rich in valuable components, such as rare earth elements (REY), silicon dioxide, alkali metal oxides, and transition metal oxides, which can be used to synthesize various functional Si-based porous materials. This article systematically summarizes the physicochemical characteristics and general processing methods of coal gangue and fly ash and reviews the progress in the application of porous materials prepared from these two solid wastes in the fields of energy and environmental protection, including the following: the adsorption treatment of heavy metal ions, ionic dyes, and organic pollutants in wastewater; the adsorption treatment of CO2, SO2, NOx, and volatile organic compounds in waste gas; the energy regeneration of existing resources, such as waste plastics, biomass, H2, and CO; and the preparation of Li-Si batteries. Combining the composition, structure, and action mechanism of various solid-waste-based porous materials, this article points out their strengths and weaknesses in the above applications. Furthermore, ideas for improvements in the applications, performance improvement methods, and energy consumption reduction processes of typical solid-waste-based porous materials are presented in this article. These works will deepen our understanding of the application of solid-waste-based porous materials in wastewater treatment, waste gas treatment, energy regeneration, and other aspects, as well as providing assistance for the integration of new technologies into solid-waste-based porous material preparation industries, and providing new ideas for reducing and reusing typical Chinese solid waste resources.

5.
Front Bioeng Biotechnol ; 11: 1125348, 2023.
Article in English | MEDLINE | ID: mdl-36815879

ABSTRACT

Although the potential of metal-organic framework (MOF) nanoparticles as drug delivery systems (DDS) for cancer treatment has been established by numerous studies, their clinical applications are still limited due to relatively poor biocompatibility. We fabricated a multifunctional Cu-MOFs@Keratin DDS for loaded drug and chemodynamic therapy (CDT) against tumor cells. The Cu-MOFs core was prepared using a hydrothermal method, and then loaded with the anticancer drug DOX and wrapped in human hair keratin. The Cu-MOFs@Keratin was well characterized by transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray photoelectron spectroscopy (XPS). Characterization and pharmacokinetic studies of Cu-MOFs@Keratin were performed in vitro and in vivo. The keratin shell reduced the cytotoxicity and potential leakage of Cu-MOFs to normal cells, and allowed the drug-loaded nanoparticles to accumulate in the tumor tissues through enhanced permeability and retention effect (EPR). The particles entered the tumor cells via endocytosis and disintegrated under the stimulation of intracellular environment, thereby releasing DOX in a controlled manner. In addition, the Cu-MOFs produced hydroxyl radicals (·OH) by consuming presence of high intracellular levels of glutathione (GSH) and H2O2, which decreased the viability of the tumor cells.

6.
Environ Pollut ; 315: 120386, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36228847

ABSTRACT

Cyanobacterial bloom challenges the aquatic ecosystem and ecological restoration is an effective approach for cyanobacterial bloom control, but the change of aquatic community after ecological restoration is still unclear. Dianchi Lake is an eutrophic lake with frequent cyanobacterial blooms in China, and recent ecological restoration projects in Caohai (north part) have a satisfactory performance. In this study, we collected 249 water samples at 23 sites from Dianchi Lake to explore the relationships between water physicochemical variables and aquatic microbial communities. Water physicochemical variables in Waihai (south part) intensively changed along time, whereas those in Caohai did not. Photoautotrophic communities were significantly divergent between Caohai and Waihai. Waihai had a lower diversity of photoautotrophic community, containing higher abundance of Cyanophyceae (89.9%) than Caohai (42.7%). Nutrient level and Cyanophyceae only exhibited strong correlations in Wahai (p < 0.05). Redundancy analysis and microbial ecological network suggested that microbial communities in Caohai had a higher stability. Deterministic process dominated the microbial assembly (50-80% for bacteria and >90% for photoautotrophs), and particularly in Caohai. Our results unraveled that the structure and assembly of bacterial and photoautotrophic communities significantly changed after ecological restoration, offering valuable suggestions that photosynthetic diversity should be focused for other ecological restoration projects.


Subject(s)
Cyanobacteria , Lakes , Lakes/chemistry , Ecosystem , China , Water , Eutrophication
7.
Front Microbiol ; 13: 928046, 2022.
Article in English | MEDLINE | ID: mdl-35783423

ABSTRACT

Roseiflexus castenholzii is an ancient green non-sulfur bacteria that absorbs the solar energy through bacteriochlorophylls (BChls) bound in the only light harvesting (LH) complex, and transfers to the reaction center (RC), wherein primary charge separation occurs and transforms the energy into electrochemical potentials. In contrast to purple bacteria, R. castenholzii RC-LH (rcRC-LH) does not contain an H subunit. Instead, a tightly bound tetraheme cytochrome c subunit is exposed on the P-side of the RC, which contains three BChls, three bacteriopheophytins (BPheos), two menaquinones, and one iron for electron transfer. These novel structural features of the rcRC-LH are advantageous for enhancing the electron transfer efficiency and subsequent photo-oxidation of the c-type hemes. However, the photochemical properties of rcRC-LH and its applications in developing the photo-bioelectrochemical cells (PBECs) have not been characterized. Here, we prepared a PBEC using overlapped fluorine-doped tin oxide (FTO) glass and Pt-coated glass as electrodes, and rcRC-LH mixed with varying mediators as the electrolyte. Absence of the H subunit allows rcRC-LH to be selectively adhered onto the hydrophilic surface of the front electrode with its Q-side. Upon illumination, the photogenerated electrons directly enter the front electrode and transfer to the counter electrode, wherein the accepted electrons pass through the exposed c-type hemes to reduce the excited P+, generating a steady-state current of up to 320 nA/cm2 when using 1-Methoxy-5-methylphenazinium methyl sulfate (PMS) as mediator. This study demonstrated the novel photoelectric properties of rcRC-LH and its advantages in preparing effective PBECs, showcasing a potential of this complex in developing new type PBECs.

8.
J Biomater Sci Polym Ed ; 33(11): 1369-1382, 2022 08.
Article in English | MEDLINE | ID: mdl-35319342

ABSTRACT

Designing a drug delivery system that is responsive in a tumor microenvironment is important to potentiate the efficacy and reduce the side effects of antitumor drugs. In this study, the surface of mesoporous silica nanoparticles (MSNs) were aminated with 3-aminopropyl triethoxysilane (APTES) and then coupled with keratin, as a gatekeeper, to afford MSNs-NH2@Keratin. The average sizes and morphologies of MSNs and MSNs-NH2@Keratin were characterized with dynamic light scattering and transmission electron microscopy, respectively. The loading content and encapsulation efficiency of doxorubicin (DOX) were calculated to be 17.1 ± 1.7% and 71.3 ± 2.1%. Drug-loaded MSNs-NH2@Keratin exhibited pH and glutathione (GSH) dual responsiveness under tumor microenvironment. The nanoparticles could be uptaken by tumor cells to effectively inhibit tumor cell growth. Moreover, the sizes of nanoparticle were stable in the serum. Collectively, our findings demonstrated the potential of DOX-loaded MSNs-NH2@Keratin in the treatment of cancer.


Subject(s)
Nanoparticles , Silicon Dioxide , Doxorubicin/pharmacology , Drug Carriers/pharmacology , Drug Delivery Systems , Glutathione , Hydrogen-Ion Concentration , Keratins , Porosity
9.
BMC Genomics ; 22(1): 372, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34016054

ABSTRACT

BACKGROUND: Phytophthora capsici root rot (PRR) is a disastrous disease in peppers (Capsicum spp.) caused by soilborne oomycete with typical symptoms of necrosis and constriction at the basal stem and consequent plant wilting. Most studies on the QTL mapping of P. capsici resistance suggested a consensus broad-spectrum QTL on chromosome 5 named Pc.5.1 regardless of P. capsici isolates and resistant resources. In addition, all these reports proposed NBS-ARC domain genes as candidate genes controlling resistance. RESULTS: We screened out 10 PRR-resistant resources from 160 Capsicum germplasm and inspected the response of locus Pc.5.1 and NBS-ARC genes during P. capsici infection by comparing the root transcriptomes of resistant pepper 305R and susceptible pepper 372S. To dissect the structure of Pc.5.1, we anchored genetic markers onto pepper genomic sequence and made an extended Pc5.1 (Ext-Pc5.1) located at 8.35 Mb-38.13 Mb on chromosome 5 which covered all Pc5.1 reported in publications. A total of 571 NBS-ARC genes were mined from the genome of pepper CM334 and 34 genes were significantly affected by P. capsici infection in either 305R or 372S. Only 5 inducible NBS-ARC genes had LRR domains and none of them was positioned at Ext-Pc5.1. Ext-Pc5.1 did show strong response to P. capsici infection and there were a total of 44 differentially expressed genes (DEGs), but no candidate genes proposed by previous publications was included. Snakin-1 (SN1), a well-known antimicrobial peptide gene located at Pc5.1, was significantly decreased in 372S but not in 305R. Moreover, there was an impressive upregulation of sugar pathway genes in 305R, which was confirmed by metabolite analysis of roots. The biological processes of histone methylation, histone phosphorylation, DNA methylation, and nucleosome assembly were strongly activated in 305R but not in 372S, indicating an epigenetic-related defense mechanism. CONCLUSIONS: Those NBS-ARC genes that were suggested to contribute to Pc5.1 in previous publications did not show any significant response in P. capsici infection and there were no significant differences of these genes in transcription levels between 305R and 372S. Other pathogen defense-related genes like SN1 might account for Pc5.1. Our study also proposed the important role of sugar and epigenetic regulation in the defense against P. capsici.


Subject(s)
Capsicum , Phytophthora , Capsicum/genetics , Disease Resistance/genetics , Dissection , Epigenesis, Genetic , Genes, vpr , Plant Diseases/genetics
10.
J Biomater Sci Polym Ed ; 32(9): 1125-1139, 2021 06.
Article in English | MEDLINE | ID: mdl-33739232

ABSTRACT

Drug-loaded nanoparticles have been widely used in the field of tumor treatment due to their low side effects and reduced frequency of administration. In this study, pH and glutathione (GSH) dual-responsive keratin-tannic acid (TA) complex nanoparticles were established to trigger drug release under tumor microenvironments. Reductive keratin was first extracted using a reduction method. Then, keratin-TA complex nanoparticles (KNPs) were self-assembled via non-covalent interaction and further stabilized by self-crosslinking of thiols. This method was facile and green without chemicals during the whole procedure. KNPs exhibited pH and GSH dual responsiveness as well as charge reversibility in the simulated tumor microenvironment. The anticancer drug of doxorubicin (DOX) was loaded on KNPs by hydrophobicity and hydrogen bonds. Drug-loaded KNPs accelerated drug release under mimicked tumor microenvironments, performing high toxic against A549 cells while low toxic on normal cells. Besides, drug-loaded nanoparticles could be endocytosed by tumor cells. Based on these results, KNPs may serve as drug carriers for therapeutic delivery.


Subject(s)
Drug Carriers , Nanoparticles , Doxorubicin/pharmacology , Drug Delivery Systems , Drug Liberation , Glutathione/metabolism , Hydrogen-Ion Concentration , Keratins , Tannins
11.
J Biomater Sci Polym Ed ; 31(18): 2318-2330, 2020 12.
Article in English | MEDLINE | ID: mdl-32729373

ABSTRACT

Drug-loaded nanoparticles have been widely used in the field of tumor treatment due to their low side effects and reduced frequency of administration. In this study, keratin-dopamine conjugate was first synthesized by amidation reaction and then formed nanoparticles by self-polymerization of dopamine segment. Keratin-dopamine conjugate nanoparticles (KNPs) exhibited pH and glutathione (GSH) dual responsiveness in the simulated tumor environment. These nanoparticles were able to load anti-cancer drug doxorubicin (DOX) through electrostatic interactions and hydrogen bonds. These drug-loaded KNPs (DKNPs) exhibited controlled drug release in a tumor simulation environment. Meanwhile, DKNPs performed a stronger inhibitory effect on tumor cells compared with human normal tissue cells. Based on the above results, keratin-dopamine conjugate based drug carriers had a broad prospect in the field of cancer treatment.


Subject(s)
Drug Carriers , Nanoparticles , Dopamine , Doxorubicin/pharmacology , Drug Delivery Systems , Drug Liberation , Glutathione/metabolism , Humans , Hydrogen-Ion Concentration , Keratins
12.
J Biomater Sci Polym Ed ; 31(15): 1994-2006, 2020 10.
Article in English | MEDLINE | ID: mdl-32589511

ABSTRACT

Nano-drug delivery system (NDDS) has attracted widespread attention for their controlled drug release. In this work, keratin nanoparticles (KNPs) were prepared by self-crosslinking. No toxic chemical crosslinkers were added in the whole procedure. The morphology and size of KNPs were tested by transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively. The KNPs exhibited GSH and pH dual responsiveness as well as charge conversion, which were beneficial to tumor therapy. In addition, the anticancer drug of doxorubicin (DOX) could be loaded on KNPs by hydrophobicity and hydrogen bonds. The drug-loaded keratin nanoparticles (KDNPs) accelerated drug release under mimicked tumor microenvironments. In addition, KDNPs could effectively inhibit tumor cell growth while performing low toxicity on normal cells. Moreover, KDNPs could be uptaken by tumor cells through endocytosis. Based on the results, keratin-based nanoparticles were suitable candidates for drug microcarriers.


Subject(s)
Drug Carriers , Nanoparticles , Doxorubicin/pharmacology , Drug Delivery Systems , Drug Liberation , Hydrogen-Ion Concentration , Keratins
13.
J Biomater Sci Polym Ed ; 31(9): 1163-1178, 2020 06.
Article in English | MEDLINE | ID: mdl-32204684

ABSTRACT

Keratin-based drug carriers have attracted great interest due to their intrinsic biocompatibility and tumor micro-environmental responsiveness. In the study, keratin was first extracted from human hair with reduction method. The reduced keratin was successively conjugated with poly(ethylene glycol) (PEG) via thiol Michael addition reaction and iodoacetic acid (IAA) via substitution reaction to impart both physical stability and acidity responsiveness. Subsequently, the conjugated keratin was fabricated into micelles and loaded with doxorubicin (DOX) by self-assembly. The micelles exhibited pH, glutathione (GSH) and enzyme (trypsin) triple-responsiveness as well as charge reversibility under the simulated tumor microenvironment. These drug-loaded micelles exhibited high toxicity against A549 cells with low side effect on normal cells. Furthermore, anticancer efficacy in vivo revealed DOX-loaded micelles presented higher therapeutic efficiency than free DOX. Moreover, these micelles were stable under physiological conditions, and could be internalized through endocytosis without hemolysis. Based on the results, the drug-loaded micelles were satisfactory candidates for drug carriers.


Subject(s)
Drug Carriers/chemistry , Keratins/chemistry , Micelles , Polyethylene Glycols/chemistry , Tumor Microenvironment , A549 Cells , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/metabolism , Glutathione/metabolism , Humans , Hydrogen-Ion Concentration , Trypsin/metabolism
14.
Langmuir ; 36(13): 3540-3549, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32192339

ABSTRACT

Drug-loaded micelles with long circulation time in blood and stimuli-responsiveness under the tumor micro-environment can significantly enhance therapeutic efficacy. In this report, human hair keratin was extracted with a reduction method and then conjugated with zwitterionic poly(2-methacryloxyethyl phosphatidylcholine, MPC) via thiol chain transfer polymerization (thiol CTP). Subsequently, keratin-polyMPC conjugates (KPC) were prepared into micelles and loaded with doxorubicin (DOX) by self-assembly. These micelles exhibited pH, glutathione (GSH), and enzyme triple-responsiveness as well as charge reversibility under the tumor micro-environment. In addition, these micelles showed high toxicity against A549 cells while low toxicity to normal cells. In vivo anticancer efficacy results revealed that these micelles showed better therapeutic efficiency than free DOX. Furthermore, these carriers exhibited prolonged circulation time, good stability, and no hemolysis in blood. Based on the results, these drug delivery systems of micelles were proper candidates as drug carriers.


Subject(s)
Drug Delivery Systems , Keratins , Micelles , Doxorubicin/administration & dosage , Drug Carriers , Drug Liberation , Humans , Hydrogen-Ion Concentration
15.
Sensors (Basel) ; 18(10)2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30309026

ABSTRACT

Continuous waveform (CW) radar is widely used in intelligent transportation systems, vehicle assisted driving, and other fields because of its simple structure, low cost and high integration. There are several waveforms which have been developed in the last years. The chirp sequence waveform has the ability to extract the range and velocity parameters of multiple targets. However, conventional chirp sequence waveforms suffer from the Doppler ambiguity problem. This paper proposes a new waveform that follows the practical application requirements, high precision requirements, and low system complexity requirements. The new waveform consists of two chirp sequences, which are intertwined to each other. Each chirp signal has the same frequency modulation, the same bandwidth and the same chirp duration. The carrier frequencies are different and there is a frequency shift which is large enough to ensure that the Doppler frequencies for the same moving target are different. According to the sign and numerical relationship of the Doppler frequencies (possibly frequency aliasing), the Doppler frequency ambiguity problem is solved in eight cases. Theoretical analysis and simulation results verify that the new radar waveform is capable of measuring range and radial velocity simultaneously and unambiguously, with high accuracy and resolution even in multi-target situations.

16.
Sensors (Basel) ; 18(7)2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30002277

ABSTRACT

This paper considers the detection of fluctuating targets in heavy-tailed clutter through the use of dynamic programming based on track-before-detect (DP⁻TBD) in radar systems. The clutter is modeled in terms of K-distribution, which can be widely used to describe non-Gaussian clutter received from high-resolution radars and radars working at small grazing angles. Swerling type 1 is considered to describe the target fluctuation between scans. Conventional TBD techniques suffer from significant performance loss in heavy-tailed environments due to the more frequent occurrences of target-like outliers. In this paper, we resort to a DP⁻TBD algorithm based on prior information, which can enhance the detection performance by using the environment and target fluctuating information during the integration process of TBD. Under non-Gaussian background, the expressions of the likelihood ratio merit function for Swerling type 1 targets are derived first. However, the closed-form of the merit function is difficult to obtain. In order to reduce the complexity of evaluating the merit function and the computational load, an efficient approximation method as well as a two-stage detection approach is proposed and used in the integration process. Finally, several numerical simulations of the new strategy and the comparisons are presented to verify that the proposed algorithm can improve the detection performance, especially for fluctuating targets in heavy-tailed clutter.

17.
Zhonghua Zhong Liu Za Zhi ; 37(5): 356-60, 2015 May.
Article in Chinese | MEDLINE | ID: mdl-26463026

ABSTRACT

OBJECTIVE: To study the expression and significance of tumor suppressor in lung cancer 1 (TSLC1) gene methylation, the expression of TSLC1 protein in cervix cancer and precancerous lesions as well as their relationship with HR-HPV DNA infection. METHODS: The clinicopathological data of 92 cases of different cervical lesions during March 2011 to August 2012 treated in our hospital were collected. There were pathologically confirmed 10 cases of normal cervix, 26 cases of cervical intraepithelial neoplasia (CIN) I, 20 cases of CIN II, 15 cases of CIN III, and 21 cases of cervical cancer. Methylation-specific polymerase chain reaction (MSP) was used to detect the TSLC1 gene methylation status in cervical lesions, immunohistochemistry (SP) was used to detect the expressions of TSLC1 protein in cervical lesions, and the second generation hybrid capture (HC2) method was used to detect the high-risk HPV in cervical lesions. RESULTS: The expression rate of TSLC1 gene methylation in normal cervical tissue, CIN I, CIN II, CIN III and SCC were 10.0%, 30.8%, 55.0%, 60.0%, 66.7%, respectively, showing a statistically significant difference (P = 0.004). The positive expression rate of TSLC1 protein in normal cervical tissue, CIN I, CIN II, CIN III and SCC were 100.0%, 80.8%, 65.0%, 33.3%, and 23.8%, respectively, with a significant difference (P = 0.004). In the progression from CIN to invasive cervical cancer, there was no significant correlation between TSLC1 gene methylation and HR-HPV DNA infection (P = 0.919), TSLC1 protein expression and HR-HPV DNA infection (P = 0.664). The correlation analysis showed a negative correlation between TSLC1 gene methylation and TSLC1 protein expression (r = -0.674, P < 0.001). CONCLUSIONS: TSLC1 gene promoter methylation may be an early event in the cervical carcinogenesis, become an early sensitive marker, and serve the early prevention and prognostic prediction for cervical cancer.


Subject(s)
Cell Adhesion Molecules/genetics , Immunoglobulins/genetics , Cell Adhesion Molecule-1 , Cell Adhesion Molecules/metabolism , DNA Methylation , Disease Progression , Female , Humans , Immunoglobulins/metabolism , Immunohistochemistry , Methylation , Polymerase Chain Reaction , Promoter Regions, Genetic , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Dysplasia/genetics , Uterine Cervical Dysplasia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...