Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256257

ABSTRACT

Major depressive disorder (MDD) is a common complication of diabetes and is often observed alongside diabetic neuropathic pain (DNP) as a comorbidity in diabetic patients. Long non-coding RNA (lncRNA) plays an important role in various pathophysiological processes. The P2X7 receptor is responsible for triggering inflammatory responses, such as pyroptosis, linked to pain and depression. The aim of this study was to investigate the effect of lncRNA MSTRG.81401 on hippocampal pyroptosis induced by the P2X7 receptor in diabetic rats with DNP combined with MDD (DNP + MDD). Our results showed that the expression of lncRNA MSTRG.81401 was significantly elevated in the hippocampus of DNP + MDD rats compared with the control group. Following the administration of shRNA targeting lncRNA MSTRG.81401, a notable elevation in mechanical and thermal pain thresholds was observed in rats with comorbid DNP and MDD. Additionally, significant improvements in depression-like behaviors were evident in the open-field test (OFT), sucrose preference test (SPT), and forced swim test (FST). In the DNP + MDD rats, elevated levels in hippocampal P2X7 receptor mRNA and protein were observed, along with increased co-expression of P2X7 and the astrocytic marker glial fibrillary acidic protein (GFAP). Meanwhile, in DNP + MDD rats, the heightened mRNA expression of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), pyroptosis-related protein Gasdermin D (GSDMD), caspase-1, IL-1ß, IL-18, and TNF-α was detected, in addition to increased serum levels of IL-1ß, IL-18 and TNF-α. After shRNA treatment with lncRNA MSTRG.81401, the above abnormal changes in indicators for pyroptosis and inflammation were improved. Therefore, our study demonstrates that shRNA of lncRNA MSTRG.81401 can alleviate the pain and depression-like behaviors in diabetic rats associated with the comorbidity of DNP and MDD by inhibiting the hippocampal P2X7 receptor-mediated pyroptosis pathway and pro-inflammatory responses. This suggests that the P2X7R/NLRP3/caspase-1 implicated pyroptosis and inflammatory scenario may serve as a potential target for the management of comorbid DNP and MDD in diabetes.


Subject(s)
Depressive Disorder, Major , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Neuralgia , RNA, Long Noncoding , Humans , Animals , Rats , RNA, Long Noncoding/genetics , Interleukin-18/genetics , Receptors, Purinergic P2X7/genetics , Pyroptosis/genetics , Depression/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , NLR Family, Pyrin Domain-Containing 3 Protein , Tumor Necrosis Factor-alpha/genetics , Neuralgia/genetics , Caspases , Hippocampus , RNA, Messenger , RNA, Small Interfering
2.
Int Immunopharmacol ; 119: 110044, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37264553

ABSTRACT

Cardiac autonomic neuropathy has a high prevalence in type 2 diabetes, which increases the risk of cardiovascular system disorders. CpG oligodeoxynucleotide (CpG-ODN), a Toll-like receptor 9 (TLR9) ligand, has been shown to have cardioprotection and cellular protection. Our previous work showed that P2Y12 in stellate ganglia (SG) is involved in the process of diabetic cardiac autonomic neuropathy (DCAN). Here, we aim to investigate whether CpG-ODN 1826 plays a protective role in DCAN and whether this beneficial protection involves regulation of the P2Y12-mediated cardiac sympathetic injury. Our results revealed that CpG-ODN 1826 activated TLR9 receptor, improved the abnormal blood pressure (BP), heart rate (HR), heart rate variability (HRV) and sympathetic nerve discharge (SND) activity in diabetic rats and reduced the up-regulated NF-κB, P2Y12 receptor, TNF-α and IL-1ß in SG. Meanwhile, CpG-ODN 1826 significantly decreased the elevated ATP, nuclear receptor coactivator 4 (NCOA4), iron, ROS and MDA levels and increased GPX4 and GSH levels. In addition, CpG-ODN 1826 contributes to maintain normalization of mitochondrial structure in SG. Overall, CpG-ODN 1826 alleviates the sympathetic excitation and abnormal neuron-glial signal communication via activating TLR9 receptors to achieve a balance of autonomic activity and relieve the DCAN in rats. The mechanism may involve the regulation of P2Y12 receptor in SG by reducing ATP release and NF-κB expression, which counteract neuroinflammation and ferroptosis mediated by activated P2Y12 in SG.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Rats , Animals , NF-kappa B/metabolism , Toll-Like Receptor 9/metabolism , Purinergic P2Y Receptor Antagonists , Diabetes Mellitus, Experimental/metabolism , Stellate Ganglion/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/therapeutic use , Adenosine Triphosphate/metabolism
3.
Neuropharmacology ; 228: 109445, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36740014

ABSTRACT

Adenosine triphosphate (ATP) acts on P2 purinergic receptors as an extracellular signaling molecule. P2 purinergic receptors include P2X ionotropic receptors and P2Y metabotropic receptors. Satellite glial cells (SGCs) and macrophages express P2X and P2Y receptors. Inflammatory cytokines and pro-nociceptive mediators are released by activated macrophages and SGCs, which can act on neurons to promote excitability and firing. In the primary sensory ganglia, in response to signals of injury, SGCs and macrophages accumulate around primary sensory neurons, forming a macrophage-SGC-neuron triad. In addition to affecting the pathological alterations of inflammation-related neuropathic pain, inflammatory cytokines and pro-nociceptive mediators are released by the action of ATP on P2X and P2Y receptors in macrophages and SGCs. Macrophages and SGCs work together to enhance and prolong neuropathic pain. The macrophage-SGC-neuron triad communicates with each other through ATP and other inflammatory mediators and maintains and promotes the initiation and development of inflammation related-neuropathic pain. This article is part of the Special Issue on "Purinergic Signaling: 50 years".


Subject(s)
Macrophages , Neuralgia , Neuroglia , Neuroinflammatory Diseases , Receptors, Purinergic P2 , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/physiology , Neuralgia/metabolism , Neuralgia/pathology , Macrophages/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroglia/metabolism , Neuroglia/pathology , Humans , Animals , Mice
4.
Int J Mol Sci ; 24(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36614227

ABSTRACT

Obesity can activate the inflammatory signal pathway, induce in the body a state of chronic inflammation, and increase the excitability of the sympathetic nervous system, which may induce sympathetic neuropathic injury. The stellate sympathetic ganglia (SG) can express the P2X4 receptor, and the abnormal expression of the P2X4 receptor is related to inflammation. Imperatorin (IMP) is a kind of furan coumarin plant which has anti-inflammatory effects. This project aimed to investigate whether IMP can affect the expression of P2X4 receptors in the SG of obese rats to display a protective effect from high-fat-triggered cardiac sympathetic neuropathic injury. Molecular docking through homology modelling revealed that IMP had good affinity for the P2X4 receptor. Our results showed that compared with the normal group, the administration of IMP or P2X4 shRNA decreased sympathetic excitement; reduced the serum levels of triglyceride, total cholesterol, and lactate dehydrogenase; downregulated the expression of P2X4 receptors in SG; and inhibited the expression of inflammatory factors in the SG and serum of obese rats significantly. In addition, the expression of factors associated with the cell pyroptosis GSDMD, caspase-1, NLRP-3, and IL-18 in obese rats were significantly higher than those of the normal rats, and such effects were decreased after treatment with IMP or P2X4 shRNA. Furthermore, IMP significantly reduced the ATP-activated currents in HEK293 cells transfected with P2X4 receptor. Thus, the P2X4 receptor may be a key target for the treatment of obesity-induced cardiac sympathetic excitement. IMP can improve obesity-induced cardiac sympathetic excitement, and its mechanism of action may be related to the inhibition of P2X4 receptor expression and activity in the SG, suppression of cellular pyroptosis in the SG, and reduction of inflammatory factor levels.


Subject(s)
Receptors, Purinergic P2X4 , Stellate Ganglion , Rats , Humans , Animals , Rats, Sprague-Dawley , Receptors, Purinergic P2X4/genetics , Receptors, Purinergic P2X4/metabolism , HEK293 Cells , Molecular Docking Simulation , Stellate Ganglion/metabolism , RNA, Small Interfering/metabolism
5.
ACS Omega ; 7(31): 27714-27721, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35967043

ABSTRACT

Hyperglycemia is one of the common symptoms of diabetes, and it produces excessive reactive oxygen species (ROS). This study investigated whether the long noncoding RNA (lncRNA) UC.360+ is involved in diabetic cardiac autonomic neuropathy (DCAN) mediated by NLRP3 inflammasome-induced pyroptosis in the stellate ganglion (SG). Using a rat type 2 diabetes model, we found that lncRNA UC.360+ short hairpin RNA (shRNA) ameliorated the dyslipidaemia of type 2 diabetic rats and reduced serum adrenaline and ROS production in SG under hyperglycemia. In addition, UC.360+ shRNA also reduced the expression of nuclear factor kappa-B (NF-κB), NLRP3, ASC, caspase-1, interleukin-1ß (IL-1ß), and IL-18 in the SG of diabetic rats and inhibited the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Therefore, lncRNA-UC.360+ shRNA may modulate the NLRP3 inflammasome/inflammatory pathway in the SG, which in turn alleviates diabetic heart sympathetic nerve damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...