Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Muscle Nerve ; 69(6): 708-718, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558464

ABSTRACT

INTRODUCTION/AIMS: GNE myopathy is a rare autosomal recessive disorder caused by pathogenic variants in the GNE gene, which is essential for the sialic acid biosynthesis pathway. Although over 300 GNE variants have been reported, some patients remain undiagnosed with monoallelic pathogenic variants. This study aims to analyze the entire GNE genomic region to identify novel pathogenic variants. METHODS: Patients with clinically compatible GNE myopathy and monoallelic pathogenic variants in the GNE gene were enrolled. The other GNE pathogenic variant was verified using comprehensive methods including exon 2 quantitative polymerase chain reaction and nanopore long-read single-molecule sequencing (LRS). RESULTS: A deep intronic GNE variant, c.862+870C>T, was identified in nine patients from eight unrelated families. This variant generates a cryptic splice site, resulting in the activation of a novel pseudoexon between exons 5 and 6. It results in the insertion of an extra 146 nucleotides into the messengerRNA (mRNA), which is predicted to result in a truncated humanGNE1(hGNE1) protein. Peanut agglutinin(PNA) lectin staining of muscle tissues showed reduced sialylation of mucin O-glycans on sarcolemmal glycoproteins. Notably, a third of patients with the c.862+870C>T variant exhibited thrombocytopenia. A common core haplotype harboring the deep intronic GNE variant was found in all these patients. DISCUSSION: The transcript with pseudoexon activation potentially affects sialic acid biosynthesis via nonsense-mediated mRNA decay, or resulting in a truncated hGNE1 protein, which interferes with normal enzyme function. LRS is expected to be more frequently incorporated in genetic analysis given its efficacy in detecting hard-to-find pathogenic variants.


Subject(s)
Exons , Introns , Multienzyme Complexes , Thrombocytopenia , Humans , Male , Female , Multienzyme Complexes/genetics , Exons/genetics , Introns/genetics , Adult , Thrombocytopenia/genetics , Distal Myopathies/genetics , Young Adult , Adolescent , Child , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Pedigree , Middle Aged
2.
JIMD Rep ; 65(1): 39-46, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38186848

ABSTRACT

Surveys and retrospective studies have revealed considerable delays in diagnosing late-onset Pompe disease (LOPD) in China, where the contributing factors remain poorly represented. Our study analyzed the diagnostic journey of 34 LOPD patients seen at our neuromuscular clinic from 2005 to 2022. We defined diagnostic delay as the time from the onset of the first relevant symptoms and laboratory findings suggestive of LOPD to the eventual diagnosis, and we constructed a correlation matrix to assess relationships among these variables. The cohort consisted of 34 patients with an equal male-to-female ratio, and the mean age at diagnosis was 27.68 ± 10.03 years. We found the median diagnostic delay to be 5 years, with a range of 0.3 to 20 years, with 97.1% having been misdiagnosed previously, most commonly with "Type II Respiratory insufficiency" (36.7%). Notably, patients at earlier onset (mean age, 18.19 years vs. 31 years; p < 0.005) tended to have higher creatine kinase (CK) levels. Furthermore, 92.6% reported difficulty in sitting up from a supine position since childhood. Our research emphasizes the role of early indicators like dyspnea and difficulty performing sit-ups in adolescents for timely LOPD diagnosis and treatment initiation. The importance of early high-risk screening using dried blood spot testing cannot be overstated.

3.
Cell Death Dis ; 12(7): 700, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262022

ABSTRACT

Proper development of the mammalian cerebral cortex relies on precise gene expression regulation, which is controlled by genetic, epigenetic, and epitranscriptomic factors. Here we generate RNA demethylase Fto and methyltransferase Mettl3 cortical-specific conditional knockout mice, and detect severe brain defects caused by Mettl3 deletion but not Fto knockout. Transcriptomic profiles using RNA sequencing indicate that knockout of Mettl3 causes a more dramatic alteration on gene transcription than that of Fto. Interestingly, we conduct ribosome profiling sequencing, and find that knockout of Mettl3 leads to a more severe disruption of translational regulation of mRNAs than deletion of Fto and results in altered translation of crucial genes in cortical radial glial cells and intermediate progenitors. Moreover, Mettl3 deletion causes elevated translation of a significant number of mRNAs, in particular major components in m6A methylation. Our findings indicate distinct functions of Mettl3 and Fto in brain development, and uncover a profound role of Mettl3 in regulating translation of major mRNAs that control proper cortical development.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Cerebral Cortex/enzymology , Gene Expression Regulation, Developmental , Methyltransferases/metabolism , Protein Biosynthesis , Transcription, Genetic , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Animals , Cerebral Cortex/embryology , Gestational Age , Methylation , Methyltransferases/genetics , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/enzymology , Neural Stem Cells/pathology , Neurogenesis , Neuroglia/enzymology , Neuroglia/pathology , RNA Processing, Post-Transcriptional , Transcriptome
4.
Genes (Basel) ; 11(10)2020 09 27.
Article in English | MEDLINE | ID: mdl-32992647

ABSTRACT

N6-methyladenosine (m6A)-mediated epitranscriptomic regulation is critical for various physiological processes. Genetic studies demonstrate that proper m6A-methylation is required for mouse brain development and function. Revealing landscapes of m6A-methylation in the cerebral cortex at different developmental stages will help to understand the biological meaning of epitranscriptomic regulation. Here, we depict the temporal-specific m6A-methylation status in mouse embryonic and postnatal cortices using methylated RNA immunoprecipitation (MeRIP) sequencing. We identified unique m6A binding motifs in stage-specific RNAs and found that more RNA transcripts are temporally methylated in embryonic cortices than in postnatal ones. Moreover, we found that cortical transcription factors and genes associated with neurological disorders are broadly as well specifically methylated at m6A sites. Our study highlights the importance of epitranscriptomic regulation in the developing cortex and provides a fundamental reference for future mechanistic examinations of m6A methylation-mediated gene expression regulation in normal brain development and neurological disorders.


Subject(s)
Adenine/analogs & derivatives , Cerebral Cortex/metabolism , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , RNA Processing, Post-Transcriptional , RNA/chemistry , Adenine/chemistry , Adenine/metabolism , Animals , Animals, Newborn , Cerebral Cortex/cytology , Embryo, Mammalian/cytology , Gene Expression Profiling , Methylation , Mice , Mice, Inbred C57BL , RNA/genetics
5.
Mol Neurobiol ; 56(3): 1596-1606, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29909453

ABSTRACT

RNA modifications are involved in many aspects of biological functions. N6-methyladenosine (m6A) is one of the most important forms of RNA methylation and plays a vital role in regulating gene expression, protein translation, cell behaviors, and physiological conditions in many species, including humans. The dynamic and reversible modification of m6A is conducted by three elements: methyltransferases ("writers"), such as methyltransferase-like protein 3 (METTL3) and METTL14; m6A-binding proteins ("readers"), such as the YTH domain family proteins (YTHDFs) and YTH domain-containing protein 1 (YTHDC1); and demethylases ("erasers"), such as fat mass and obesity-associated protein (FTO) and AlkB homolog 5 (ALKBH5). In this review, we summarize the current knowledge on mapping mRNA positions of m6A modification and revealing molecular processes of m6A. We further highlight the biological significance of m6A modification in neural cells during development of the nervous system and its association with human diseases. m6A RNA methylation is becoming a new frontier in neuroscience and should help us better understand neural development and neurological diseases from a novel point of view.


Subject(s)
Adenosine/analogs & derivatives , Nervous System Diseases/metabolism , Neurogenesis/physiology , Adenosine/genetics , Adenosine/metabolism , Humans , Methylation , Nervous System Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...