Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(23): 13001-13014, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38812066

ABSTRACT

Phloridzin significantly influences apple plant growth, development, and resistance to environmental stresses by engaging in various metabolic processes. Its excessive accumulation in soil, attributed to continuous monoculture practices, not only inhibits plant growth but also disrupts the rhizosphere microbial community. This study aims to explore the remedial effects of dopamine, a known antioxidant and stress resistance modulator in plants, on the adverse impacts of phloridzin stress in apple. Through hydroponic and pot experiments, it was demonstrated that dopamine significantly mitigates the growth inhibition caused by phloridzin stress in apple by reducing reactive oxygen species levels and enhancing photosynthesis and nitrogen transport. Additionally, dopamine reduced phloridzin concentrations in both the rhizosphere and roots. Furthermore, dopamine positively influences the structure of the rhizosphere microbial community, enriching beneficial microbes associated with nitrogen cycling. It increases the potential for soil nitrogen degradation and fixation by upregulating the abundance of ureC, GDH, and nifH, as revealed by metagenomic analysis. This aids in alleviating phloridzin stress. The study reveals dopamine's pivotal roles in modulating rhizosphere ecology under phloridzin stress and suggests its potential in sustainable apple cultivation practices to counter ARD and enhance productivity.


Subject(s)
Bacteria , Dopamine , Malus , Phlorhizin , Plant Roots , Rhizosphere , Soil Microbiology , Malus/microbiology , Malus/metabolism , Malus/drug effects , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Dopamine/metabolism , Plant Roots/microbiology , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Phlorhizin/pharmacology , Microbiota/drug effects , Nitrogen/metabolism , Reactive Oxygen Species/metabolism , Photosynthesis/drug effects
2.
Plant Cell Environ ; 47(7): 2614-2630, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38712467

ABSTRACT

The dynamics of the physiological adaptability of plants and the rhizosphere soil environment after waterlogging remain unclear. Here we investigated the mechanisms regulating plant condition and shaping of the rhizosphere microbiome in a pot experiment. In the experiment, we added melatonin to waterlogged plants, which promoted waterlogging relief. The treatment significantly enhanced photosynthesis and the antioxidant capacity of apple plants, and significantly promoted nitrogen (N) utilization efficiency by upregulating genes related to N transport and metabolism. Multiperiod soil microbiome analysis showed the dynamic effects of melatonin on the diversity of the microbial community during waterlogging recovery. Random forest and linear regression analyses were used to screen for potential beneficial bacteria (e.g., Azoarcus, Pseudomonas and Nocardioides) specifically regulated by melatonin and revealed a positive correlation with soil nutrient levels and plant growth. Furthermore, metagenomic analyses revealed the regulatory effects of melatonin on genes involved in N cycling in soil. Melatonin positively contributed to the accumulation of plant dry weight by upregulating the expression of nifD and nifK (N fixation). In summary, melatonin positively regulates physiological functions in plants and the structure and function of the microbial community; it promoted the recovery of apple plants after waterlogging stress.


Subject(s)
Malus , Melatonin , Microbiota , Rhizosphere , Melatonin/pharmacology , Melatonin/metabolism , Malus/drug effects , Malus/genetics , Malus/microbiology , Malus/physiology , Malus/metabolism , Microbiota/drug effects , Soil Microbiology , Nitrogen/metabolism , Photosynthesis/drug effects , Bacteria/metabolism , Bacteria/genetics , Bacteria/drug effects
3.
Microbiol Res ; 283: 127690, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461571

ABSTRACT

Rootstock is commonly used to enhance plant resistance to drought stress. However, it is necessary to investigate the effects of different rootstock, interstock, and scion combinations on rhizosphere and root endophytic bacteria under drought stress. We conducted a pot experiment to investigate how interstock [SH40, Jizhen 1 (J1), and Jizhen 2 (J2)] affects the drought tolerance and nitrogen (N) uptake and utilization of apple trees under drought stress. The results showed that the total dry weight, total chlorophyll content, carotenoid content, photosynthesis rate, and N absorption and utilization efficiency of apple trees decreased significantly, whereas relative electrolyte leakage increased significantly under drought stress. Membership function analysis showed that the apple plants with the J1 interstock had the greatest drought resistance. In addition, drought treatment significantly affected the diversity and composition of rhizosphere and root endophytic communities in all three rootstock/interstock/scion combinations. Further analysis revealed that the relative abundance of the plant pathogen Ralstonia was significantly increased in J2 drought-treated roots, compared to the other groups, whereas those of some potentially beneficial bacteria (0134_terrestrial_group, Phenylobacterium, Ellin6067, Kribbella, Chloronema, and Streptomyces) increased significantly in the J1 drought-treated sample. Co-occurrence network analysis showed that some potentially beneficial bacteria (Ellin6067, S0134_terrestrial_group, Pedomicrobium, and Subgroup_10) were significantly positively correlated with N content. These modifications of the rhizosphere and endophytic bacterial communities may influence the drought resilience and N uptake efficiency of different combinations of interstocks and scions. This study is a much-needed step towards understanding the stress response mechanism of scion-rootstock combinations.


Subject(s)
Malus , Malus/physiology , Drought Resistance , Rhizosphere , Bacteria/genetics , Droughts , Plants , Plant Roots/microbiology
4.
Tree Physiol ; 44(2)2024 02 11.
Article in English | MEDLINE | ID: mdl-38224320

ABSTRACT

The level of cadmium (Cd) accumulation in orchard soils is increasing, and excess Cd will cause serious damage to plants. Melatonin is a potent natural antioxidant and has a potential role in alleviating Cd stress. This study aimed to investigate the effects of exogenous melatonin on a root endophyte bacteria community and metabolite composition under Cd stress. The results showed that melatonin significantly scavenged the reactive oxygen species and restored the photosynthetic system (manifested by the improved photosynthetic parameters, total chlorophyll content and the chlorophyll fluorescence parameters (Fv/Fm)), increased the activity of antioxidant enzymes (the activities of catalase, superoxide dismutase, peroxidase and ascorbate oxidase) and reduced the concentration of Cd in the roots and leaves of apple plants. High-throughput sequencing showed that melatonin increased the endophytic bacterial community richness significantly and changed the community structure under Cd stress. The abundance of some potentially beneficial endophytic bacteria (Ohtaekwangia, Streptomyces, Tabrizicola and Azovibrio) increased significantly, indicating that the plants may absorb potentially beneficial microorganisms to resist Cd stress. The metabolomics results showed that melatonin significantly changed the composition of root metabolites, and the relative abundance of some metabolites decreased, suggesting that melatonin may resist Cd stress by depleting root metabolites. In addition, co-occurrence network analysis indicated that some potentially beneficial endophytes may be influenced by specific metabolites. These results provide a theoretical basis for studying the effects of melatonin on the endophytic bacterial community and metabolic composition in apple plants.


Subject(s)
Malus , Melatonin , Melatonin/pharmacology , Antioxidants/metabolism , Cadmium/toxicity , Cadmium/metabolism , Malus/metabolism , Chlorophyll/metabolism
5.
Hortic Res ; 10(7): uhad112, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37577402

ABSTRACT

Dopamine has demonstrated promise as a stress-relief substance. However, the function of dopamine in Cd tolerance and its mechanism remains largely unknown. The current study was performed to investigate the mechanism of dopamine on alleviating apple Cd stress through regular application of CdCl2 and dopamine solution to potting soil. The results indicated that dopamine significantly reduced reactive oxygen species (ROS) and Cd accumulation and alleviated the inhibitory effect of Cd stress on the growth of apple plants through activation of the antioxidant system, enhancement of photosynthetic capacity, and regulation of gene expression related to Cd absorption and detoxification. The richness of the rhizosphere microbial community increased, and community composition and assembly were affected by dopamine treatment. Network analysis of microbial communities showed that the numbers of nodes and total links increased significantly after dopamine treatment, while the keystone species shifted. Linear discriminant analysis effect size indicated that some biomarkers were significantly enriched after dopamine treatment, suggesting that dopamine induced plants to recruit potentially beneficial microorganisms (Pseudoxanthomonas, Aeromicrobium, Bradyrhizobium, Frankia, Saccharimonadales, Novosphingobium, and Streptomyces) to resist Cd stress. The co-occurrence network showed several metabolites that were positively correlated with relative growth rate and negatively correlated with Cd accumulation, suggesting that potentially beneficial microorganisms may be attracted by several metabolites (L-threonic acid, profenamine, juniperic acid and (3ß,5ξ,9ξ)-3,6,19-trihydroxyurs-12-en-28-oic acid). Our results demonstrate that dopamine alleviates Cd stress in apple trees by recruiting beneficial microorganisms to enhance the physiological resilience revealed. This study provides an effective means to reduce the harm to agricultural production caused by heavy metals.

6.
Front Microbiol ; 13: 980327, 2022.
Article in English | MEDLINE | ID: mdl-36439851

ABSTRACT

This study explored the contributions of melatonin and dopamine to the uptake and utilization of nitrogen and the formation of rhizosphere microbial communities in 'Tianhong 2'/M. hupehensis, with the goal improving plant resistance to drought stress. Drought stress was formed by artificially controlling soil moisture content. And melatonin or dopamine solutions were applied to the soil at regular intervals for experimental treatment. After 60 days of treatment, plant indices were determined and the structure of the rhizosphere microbial community was evaluated using high-throughput sequencing technology. The findings revealed two ways through which melatonin and dopamine alleviate the inhibition of growth and development caused by drought stress by promoting nitrogen uptake and utilization in plants. First, melatonin and dopamine promote the absorption and utilization of nitrogen under drought stress by directly activating nitrogen transporters and nitrogen metabolism-related enzymes in the plant. Second, they promote the absorption of nitrogen by regulating the abundances of specific microbial populations, thereby accelerating the transformation of the soil nitrogen pool to available nitrogen that can be absorbed directly by plant roots and utilized by plants. These findings provide a new framework for understanding how melatonin and dopamine regulate the uptake and utilization of nitrogen in plants and improve their ability to cope with environmental disturbances.

7.
Int J Mol Sci ; 23(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36077267

ABSTRACT

Nutrient stress harms plant growth and yield. Melatonin is a biologically active, multifunctional hormone that relieves abiotic stress in plants. Although previous studies have shown that melatonin plays an important role in improving nutrient-use efficiency, the mechanism of its regulation of nutrient stress remains unclear. In this study, melatonin was applied to apple plants under nutrient stress, and morphological indices, physiological and biochemical indices, and stomatal morphology were evaluated. The response of apple plants to nutrient deficiency and the melatonin mechanism to alleviate nutrient stress were analyzed by combining ionome, transcriptome, and metabolome. The results showed that exogenous melatonin significantly alleviated the inhibitory effect of nutritional stress on the growth of apple plants by regulating stomatal morphology, improving antioxidant enzyme activity, promoting ion absorption, and utilizing and changing the absorption and distribution of minerals throughout the plant. The transcriptome results showed that melatonin alleviated nutrient stress and promoted nutrient absorption and utilization by regulating glutathione metabolism and upregulating some metal ion transport genes. The metabolome results indicated that levels of oxalic acid, L-ascorbic acid, anthocyanins (cyanidin-3-O-galactoside), lignans (lirioresinol A and syringaresinol), and melatonin significantly increased after exogenous melatonin was applied to plants under nutrient stress. These differentially expressed genes and the increase in beneficial metabolites may explain how melatonin alleviates nutrient stress in plants.


Subject(s)
Malus , Melatonin , Anthocyanins/metabolism , Antioxidants/metabolism , Antioxidants/pharmacology , Malus/genetics , Malus/metabolism , Melatonin/metabolism , Melatonin/pharmacology , Nutrients , Plant Proteins/genetics , Stress, Physiological/genetics , Transcriptome
8.
Plant Physiol Biochem ; 171: 182-190, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35007949

ABSTRACT

In plants, ammonium (NH4+) is the main nitrogen source and acts as a physiological and morphological response signaling molecule. Melatonin and dopamine are associated with plant responses to abiotic stress. However, previous studies have rarely focused on nutrient stress, and the roles of melatonin and dopamine in the uptake and metabolism of nitrogen in plants remain unclear. In this study, we investigated the regulatory effects of melatonin and dopamine on nitrogen utilization efficiency in apple seedlings under two NH4+ concentrations (2 and 0.1 mM) by measuring plant growth, root system architecture, 15NH4+ content, and related enzyme activity and gene expression. Under low nitrogen supply, apple seedling growth slowed and showed marked reductions in biomass accumulation, chlorophyll content, and nutrient uptake. However, both melatonin and dopamine significantly improved plant growth, chlorophyll content, and root development and enhanced antioxidant enzyme activity. Exogenous application of melatonin or dopamine also promoted the absorption and accumulation of 15NH4+ and enhanced nitrogen metabolism-related enzyme activity. At the molecular level, melatonin and dopamine significantly increased the expression levels of nitrogen metabolism genes and transporter genes. Overall, these results suggest that melatonin and dopamine can relieve nutrient stress caused by low concentrations of NH4+ through regulating the absorption and metabolism of nitrogen.


Subject(s)
Ammonium Compounds , Malus , Melatonin , Dopamine , Melatonin/pharmacology , Nitrogen , Seedlings
9.
Front Plant Sci ; 12: 807472, 2021.
Article in English | MEDLINE | ID: mdl-35154200

ABSTRACT

Malus hupehensis, as an apple rootstock, is an economically important tree species popular due to its excellent fruit yield and stress resistance. Nitrogen is one of the critical limiting factors of plant growth and fruit yield, so it is crucial to explore new methods to improve nitrogen use efficiency. Melatonin and dopamine, as multifunctional metabolites, play numerous physiological roles in plants. We analyzed the effects of exogenous melatonin and dopamine treatments on the growth, root system architecture, nitrogen absorption, and metabolism of M. hupehensis when seedlings were exposed to nitrate-deficient conditions. Under low nitrate stress, plant growth slowed, and chlorophyll contents and 15NO3 - accumulation decreased significantly. However, the application of 0.1 µmol/L melatonin or 100 µmol/L exogenous dopamine significantly reduced the inhibition attributable to low nitrate levels during the ensuing period of stress treatment, and the effect of dopamine was more obvious. In addition to modifying the root system architecture of nitrate-deficient plants, exogenous melatonin and dopamine also changed the uptake, transport, and distribution of 15NO3 -. Furthermore, both exogenous melatonin and dopamine enhanced tolerance to low nitrate stress by maintaining the activity of enzymes (NR, NiR, GS, Fd-GOGAT, and NADH-GOGAT) and the transcription levels of related genes involved in leaf and root nitrogen metabolism. We also found that exogenous melatonin and dopamine promoted the expression of nitrate transporter genes (NRT1.1, NRT2.4, NRT2.5, and NRT2.7) in nitrate-deficient plant leaves and roots. Our results suggest that both exogenous melatonin and dopamine can mitigate low nitrate stress by changing the root system architecture, promoting the absorption of nitrate, and regulating the expression of genes related to nitrogen transport and metabolism. However, according to a comprehensive analysis of the results, exogenous dopamine plays a more significant role than melatonin in improving plant nitrogen use efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...