Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
BMC Public Health ; 24(1): 1456, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822296

ABSTRACT

BACKGROUND: As a chronic metabolic disease, diabetes poses a serious threat to human health and has become a major public health problem in China and worldwide. In 2020, 30% of Chinese people (aged ≥ 60 years) reported having diabetes mellitus. Moreover, individuals with diabetes living in rural areas face a significantly higher mortality risk compared to those in urban areas. In this study, we explored the inner experience of self-management behaviors in elderly patients with type 2 diabetes in rural areas to inform targeted interventions. METHODS: A phenomenological research design was used to explore the inner experience of self-management in rural elderly diabetes. Ten elderly diabetic patients were sampled from December 2022 to March 2023 in rural areas of Yangcheng County, Jincheng City, ShanXi Province, China. The seven-step Colaizzi phenomenological was used to analyze the interview data and generate themes. RESULTS: Four themes emerged: "Insufficient self-management cognition", "Negative self-management attitude", "Slack self-management behavior", and "No time for self-management". CONCLUSION: The level of self-management among elderly patients with type 2 diabetes in rural areas is low. Healthcare professionals should develop targeted interventions aimed at enhancing their cognitive levels, modifying their coping styles, and improving their self-management abilities to improve their quality of life.


Subject(s)
Diabetes Mellitus, Type 2 , Qualitative Research , Rural Population , Self-Management , Humans , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/psychology , Aged , Male , Female , Self-Management/psychology , Rural Population/statistics & numerical data , China/epidemiology , Middle Aged , Aged, 80 and over
2.
Molecules ; 29(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338333

ABSTRACT

Bacterial infections pose a significant risk to human health. Magnolol, derived from Magnolia officinalis, exhibits potent antibacterial properties. Synthetic biology offers a promising approach to manufacture such natural compounds. However, the plant-based biosynthesis of magnolol remains obscure, and the lack of identification of critical genes hampers its synthetic production. In this study, we have proposed a one-step conversion of magnolol from chavicol using laccase. After leveraging 20 transcriptomes from diverse parts of M. officinalis, transcripts were assembled, enriching genome annotation. Upon integrating this dataset with current genomic information, we could identify 30 laccase enzymes. From two potential gene clusters associated with magnolol production, highly expressed genes were subjected to functional analysis. In vitro experiments confirmed MoLAC14 as a pivotal enzyme in magnolol synthesis. Improvements in the thermal stability of MoLAC14 were achieved through selective mutations, where E345P, G377P, H347F, E346C, and E346F notably enhanced stability. By conducting alanine scanning, the essential residues in MoLAC14 were identified, and the L532A mutation further boosted magnolol production to an unprecedented level of 148.83 mg/L. Our findings not only elucidated the key enzymes for chavicol to magnolol conversion, but also laid the groundwork for synthetic biology-driven magnolol production, thereby providing valuable insights into M. officinalis biology and comparative plant science.


Subject(s)
Allyl Compounds , Lignans , Magnolia , Phenols , Humans , Magnolia/genetics , Magnolia/chemistry , Laccase , Lignans/chemistry , Biphenyl Compounds/chemistry
3.
Molecules ; 29(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338387

ABSTRACT

Trilobatin (TBL) is a key sweet compound from the traditional Chinese sweet tea plant (Rubus suavissimus S. Lee). Because of its intense sweetness, superior taste profile, and minimal caloric value, it serves as an exemplary natural dihydrochalcone sweetener. It also has various health benefits, including anti-inflammatory and glucose-lowering effects. It is primarily produced through botanical extraction, which impedes its scalability and cost-effectiveness. In a novel biotechnological approach, phloretin is used as a precursor that is transformed into TBL by the glycosyltransferase enzyme ph-4'-OGT. However, this enzyme's low catalytic efficiency and by-product formation limit the large-scale synthesis of TBL. In our study, the enzyme Mdph-4'-OGT was used to screen 17 sequences across species for TBL synthesis, of which seven exhibited catalytic activity. Notably, PT577 exhibited an unparalleled 97.3% conversion yield within 3 h. We then optimized the reaction conditions of PT577, attaining a peak TBL bioproduction of 163.3 mg/L. By employing virtual screening, we identified 25 mutation sites for PT577, thereby creating mutant strains that reduced by-products by up to 50%. This research enhances the enzymatic precision for TBL biosynthesis and offers a robust foundation for its industrial-scale production, with broader implications for the engineering and in silico analysis of glycosyltransferases.


Subject(s)
Flavonoids , Glycosyltransferases , Polyphenols , Glycosyltransferases/genetics , Antioxidants , Sweetening Agents
4.
Article in English | MEDLINE | ID: mdl-38237126

ABSTRACT

Introduction: Olivetolic acid (OLA) is a key intermediate in cannabidiol (CBD) synthesis, and cannabinoids are important neuroactive drugs. However, the catalytic activity of olivetolic acid synthase (OLS), the key enzyme involved in OLA biosynthesis, remains low and its catalytic mechanism is unclear. Materials and Methods: In this study, we conducted a scrupulous screening of the pivotal rate-limiting enzyme and analyzed its amino acid sites that are critical to enzyme activity as validated by experiments. Results: Through stringent enzyme screening, we pinpointed a highly active OLS sequence, OLS4. Then, we narrowed down three critical amino acid sites (I258, D198, E196) that significantly influence the OLS activity. Conclusions: Our findings laid the groundwork for the efficient biosynthesis of OLA, and thereby facilitate the biosynthesis of CBD.

5.
Zhongguo Zhen Jiu ; 43(10): 1184-8, 2023 Oct 12.
Article in Chinese | MEDLINE | ID: mdl-37802527

ABSTRACT

Since the anatomical location of acupoints was recorded in The latest Practice of Western Acupuncture in 1915, and Lecture Notes on Advanced Acupuncture in 1931, the Japanese acupuncture works of Chinese translation version, the location of Dazhui (GV 14) (under the spinous process of the 7th cervical vertebra) and Yaoyangguan (GV 3) (under the spinous process of the 4th lumbar vertebra) had rarely been questioned for nearly a century. In order to confirm the above statement, the writers have reviewed ancient literature, combined with the modern anatomical knowledge and searched the evidences from the core arguments of the acupuncture Mingtang chart and the bronze acupuncture statue. It is believed that Dazhui (GV 14) should be positioned under the spinous process of the 1st thoracic vertebra, and Yaoyangguan(GV 3) be under the spinous process of the 5th lumbar vertebra. Accordingly, all of the other acupoints of these meridians should be moved down by 1 vertebra, i.e. those on the governor vessel from Dazhui (GV 14) to Yaoyangguan (GV 3), those on the 1st lateral line of the bladder meridian of foot-taiyang from Dazhu (BL 11) to Baihuanshu (BL 30) and those on the 2nd lateral line of the bladder meridian from Fufen (BL 41) to Zhibian (BL 54).


Subject(s)
Acupuncture Therapy , Meridians , Acupuncture Therapy/history , Acupuncture Points , Lumbar Vertebrae , Thoracic Vertebrae
SELECTION OF CITATIONS
SEARCH DETAIL
...