Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 58(85): 12001, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36218137

ABSTRACT

Correction for 'An azobenzene-modified redox-active ionic liquid electrolyte for supercapacitors' by Yuhua Zhao et al., Chem. Commun., 2022, https://doi.org/10.1039/d2cc04081f.

2.
Materials (Basel) ; 15(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36295465

ABSTRACT

Ionic liquids (ILs), with their wide electrochemical stable potential window, are promising electrolytes for supercapacitors (SCs). The suitable matching of the ion size and shape of the ILs to the pore size and structure of porous carbon (PC) electrode materials can realize the enhanced capacitive performance of the SCs. Here we report an interesting result: The capacitance of PC-based SCs shows a quasi-sinusoidal relationship with the composition (mass fraction) of the binary IL mixture as the electrolyte. This relationship is also interpreted based on the matching between the pore sizes of the PC materials and the size/shape of various ions of the IL mixture electrolyte. This can provide a new strategy to improve the performance of SCs by formulating a suitable mixture of different ILs to match the carbon-based electrode materials with a special pore size distribution.

3.
Chem Commun (Camb) ; 58(82): 11567-11570, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36165568

ABSTRACT

A new redox-active ionic liquid (2-(4-(phenyldiazenyl)phenoxy)ethyl)-1-methyl-imidazolium tetrafluoroborate ([ABEMIM][BF4]) is demonstrated. It is incorporated into another ionic liquid ([EMIM][BF4]) to form a mixed IL electrolyte, which can markedly improve the capacitance performance of carbon-based supercapacitors via extra pseudocapacitance contribution. It opens up a new path to develop high-energy supercapacitors through introducing a redox-active ionic liquid to electrolytes.

4.
Nanoscale ; 13(31): 13285-13293, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34259289

ABSTRACT

Supercapacitors, as one of the most promising energy storage devices, have high power density but low energy density. An appropriate collocation of porous carbon electrodes and ionic liquid electrolytes can improve notably the performance of supercapacitors. Herein, we report a pre-assembly strategy to prepare three-dimensional (3D) hierarchical porous carbons (HPCs) as the electrode materials for supercapacitors. Three long-chain hydrophilic polymers polyacrylamide (PAM)/gelatin/F127 in water form 3D frameworks by pre-assembly and further form a hydrogel. Then the hydrogel is freeze-dried, carbonized, and etched to form 3D hierarchical porous carbons. The effects of pore volume, pore size, and ratio of mesopores to micropores on the performance of ionic liquid-based supercapacitors are investigated. The porous structure of the prepared HPCs can well match EMIMBF4. Therefore, HPCs as electrode materials for supercapacitors exhibit an excellent specific capacity of 216.5 F g-1 at 1 A g-1, and the as-assembled symmetric supercapacitor delivers a superior energy density of 108.6 W h kg-1 at a power density of 961.1 W kg-1. Meanwhile, the symmetric supercapacitor maintains 84.4% of its initial capacitance after 10 000 cycles at 3 A g-1. This work provides a guide for developing new porous carbon materials for supercapacitors with a high energy density.

5.
Carbohydr Polym ; 115: 49-53, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25439867

ABSTRACT

The conversion of cellulosic biomass directly into valuable chemicals becomes a hot subject. Six novel acidic ionic liquids (ILs) based on 2-phenyl-2-imidazoline were synthesized and characterized by UV-VIS, TGA, and NMR. The novel acidic ionic liquids were investigated as catalysts for the hydrolysis of cellulose in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The acidic ionic liquids with anions HSO4(-) and Cl(-) showed better catalytic performance for the hydrolysis of cellulose than those with H2PO4(-). The temperature and dosage of water affect significantly the yield of total reducing sugar (TRS). When the hydrolysis of cellulose was catalyzed by 1-propyl sulfonic acid-2-phenyl imidazoline hydrogensulfate (IL-1) and the dosage of water was 0.2g, the TRS yield was up to 85.1% within 60 min at 100°C. These new acidic ionic liquids catalysts are expected to have a wide application in the conversion of cellulose into valuable chemicals.

SELECTION OF CITATIONS
SEARCH DETAIL
...