Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 852: 158586, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36075441

ABSTRACT

The anaerobic membrane bioreactor (AnMBR) has gained huge attention as a municipal wastewater (MWW) treatment process that combined high organics removal, a low sludge yield and bioenergy recovery. In this study, a 20 L AnMBR was set up and operated steadily for 70 days in temperate conditions with an HRT of 6 h and a flux of 12 LMH for the treatment of real MWW, focusing on the behavior of the major elements (C, N, P and S) from an elemental balance perspective. The results showed that the AnMBR achieved more than 85 % COD removal, a low sludge yield (0.081 gVSS/gCODremoved) and high methane production (0.31 L-CH4/gCODremoved) close to the theoretical value. The elemental flow analysis revealed that the AnMBR converted 77 % of the influent COD to methane (57 % gaseous and 20 % dissolved) and 6 % of the COD for sludge production. In addition, the AnMBR converted 34 % of the total carbon to energy-generated carbon, and only 3 % was in the form of CO2 in the biogas for further upgradation, which was in line with the concept of carbon neutrality. Since little nitrogen or phosphorus were removed, the permeate was nutrient-rich and further treatment to recover the nutrients would be required. This study illustrates the superior performance of the AnMBR for MWW treatment with a microscopic view of elemental behavior and provides a reference for implementing the mainstream AnMBR process in carbon-neutral wastewater treatment plants.


Subject(s)
Sewage , Water Purification , Wastewater , Waste Disposal, Fluid/methods , Anaerobiosis , Biofuels , Carbon , Carbon Dioxide , Membranes, Artificial , Bioreactors , Water Purification/methods , Methane , Phosphorus , Nitrogen
2.
Sci Total Environ ; 820: 153284, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35066041

ABSTRACT

Sustainable urban development is threatened by an impending energy crisis and large amounts of organic wastes generated from the municipal sector among others. Conventional waste management methods involve greenhouse gas (GHG) emission and limited resource recovery, thus necessitating advanced techniques to convert such wastes into bioenergy, bio-fertilizers and valuable-added products. Research and application experiences from different scale applications indicate that the anaerobic membrane bioreactor (AnMBR) process is a kind of high-rate anaerobic digester for urban organic wastes valorization including food waste and waste sludge, while the research status is still insufficiently summarized. Through compiling recent achievements and literature, this review will focus on the following aspects, including AnMBR treatment performance and membrane fouling, technical limitations, energy balance and techno-economic assessment as well as future perspectives. AnMBR can enhance organic wastes treatment via complete retention of functional microbes and suspended solids, and timely separation of products and potential inhibitory substances, thus improving digestion efficiency in terms of increased organics degradation rates, biogas production and process robustness at a low footprint. When handling high-solid organic wastes, membrane fouling and mass transfer issues can be the challenges limiting AnMBR applications to a wet-type digestion, thus countermeasures are required to pursue extended implementations. A conceptual framework is proposed by taking various organic wastes disposal and final productions (permeate, biogas and biosolids) utilization into consideration, which will contribute to the development of AnMBR-based waste-to-resource facilities towards sustainable waste management and more economic-environmental benefits output.


Subject(s)
Refuse Disposal , Waste Disposal, Fluid , Anaerobiosis , Bioreactors , Food , Methane , Sewage , Waste Disposal, Fluid/methods , Wastewater
3.
Bioresour Technol ; 344(Pt B): 126238, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34743991

ABSTRACT

The treatment of a dewatered liquid of dry fermentation via the anammox process was investigated in the present study. Fast acclimation was established: within 2-months of operation, nitrogen removal rate reached 5 times (5.5 g-N/L/d) higher than it was at startup, which was achieved by inoculation with cold-stored HAP-anammox granules and inhibition control. The specific anammox activity of the dewatered liquid was highly improved and quite comparable to that of synthetic wastewater. Ca. Kuenenia with the relative abundance of 31.1% was revealed to be the only anammox genre and maintained its dominance throughout the operation. Simultaneously, Ca. D. denitrificans was proliferated, with its relative abundance increasing from 1.5% to 14.9%. The microbial co-occurrence network of HAP-anammox granules developed during the treatment of the dewatered liquid of dry fermentation. The experience of this work provides valuable strategies facilitating fast acclimation of the anammox process for the treatment of high-strength wastewater.


Subject(s)
Ammonium Compounds , Denitrification , Acclimatization , Anaerobic Ammonia Oxidation , Bioreactors , Fermentation , Methane , Nitrogen , Oxidation-Reduction , Sewage , Symbiosis , Wastewater
4.
Bioresour Technol ; 336: 125306, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34034012

ABSTRACT

A submerged anaerobic membrane bioreactor (SAnMBR) was used in the treatment of real municipal wastewater at operation temperatures ranging from 15 °C to 25 °C and hydraulic retention time (HRT) of 6 h. The treatment process was evaluated in terms of organic removal efficiency, biogas production, sludge growth and membrane filtration. During long-term operation, the SAnMBR achieved chemical oxygen demand removal efficiencies of about 90% with a low sludge yield (0.12-0.19 g-VSS/g-CODrem) at 20-25 °C. Approximately 1.82-2.27 kWh/d of electric energy was generated during the wastewater treatment process at 20-25 °C, 0.67 kWh/d was generated at 15 °C. The microbial community analysis results showed that microbial community was dominated by aceticlastic methanogens, coupled by hydrogenotrophic methanogens and a very small quantity of methylotrophic methanogens. It was also shown that the stabilization of the microbial community could be attributed to the carbohydrate-protein degrading bacteria and the carbohydrate degrading bacteria.


Subject(s)
Microbiota , Wastewater , Anaerobiosis , Biofuels , Bioreactors , Membranes, Artificial , Sewage , Temperature , Waste Disposal, Fluid
5.
Sci Total Environ ; 742: 140687, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32721758

ABSTRACT

Wastewater preconcentration to capture abundant organics is promising for facilitating subsequent anaerobic digestion (AD) to recover bioenergy, however research efforts are still needed to verify the effectiveness of such an emerging strategy as carbon capture plus AD. Therefore, lab-scale anaerobic dynamic membrane bioreactors (AnDMBRs) without and with the addition of zero-valent iron (ZVI) (i.e., AnDMBR1 versus AnDMBR2) were developed for preconcentrated domestic wastewater (PDW) treatment, and the impact of ZVI addition on process performance and associated mechanisms were investigated. The stepwise addition of ZVI from 2 to 4 to 6 g/L improved the treatment performance as COD removal slightly increased and TP removal and methane production were enhanced by 53.3%-62.9% and 22.6%-31.3%, respectively, in consecutive operational phases. However, the average increasing rate of the transmembrane pressure (TMP) in AnDMBR2 (0.18 kPa/d) was obviously higher than that in AnDMBR1 (0.05 kPa/d), indicating an unfavorable impact of dosing ZVI on the dynamic membrane (DM) filtration performance. ZVI that has transformed to iron ions (mainly Fe2+) can behave as a coagulant, electron donor or inorganic foulant, thus enabling the excellent removal of dissolved phosphorous, enhancing the enrichment and activities of specific methanogens and causing the formation of a compact DM layer. Morphological, componential, and microbial community analyses provided new insights into the functional mechanisms of ZVI added to membrane-assisted anaerobic digesters, indicating that ZVI has the potential to improve bioenergy production and resource recovery, while optimizing the ZVI dosage should be considered to alleviate membrane fouling.


Subject(s)
Iron , Wastewater , Anaerobiosis , Bioreactors , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...