Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(12): e32989, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022017

ABSTRACT

The advancement in electrocatalysis, particularly in the development of efficient catalysts for hydrogen and oxygen evolution reactions (HER and OER), is crucial for sustainable energy generation through processes like overall water splitting. A notable bifunctional electrocatalyst, CoFe2O4/Co7Fe3, has been engineered to facilitate both OER and HER concurrently, aiming to reduce overpotentials. In the pursuit of further enhancing catalytic efficiency, a morphological transformation has been achieved by introducing a sulphur source and multi-walled carbon nanotubes (MWCNTs) into the catalyst system, resulting in S-CoFe2O4/Co7Fe3/MWCNTs. This modification has significantly improved the activity for both OER and HER. An onset overpotential of 250 mV@10 mAcm-2 for the OER and 270 mV@50 mAcm-2 for the HER, indicating efficient catalytic activity at relatively low overpotentials. S-CoFe2O4/Co7Fe3/MWCNTs display an outstanding long-term stability in alkaline electrolytes, with minimal Tafel slopes of 77 mV/dec for the OER and 70 mV/dec for the HER, suggesting sustained catalytic performance over extended periods. Furthermore, when employed as both the cathode and anode in the context of complete water splitting, S-CoFe2O4/Co7Fe3/MWCNTs demonstrate an impressive cell voltage of 1.52 V at a current density of 10 mA cm-2 in a 1 M KOH solution, showcasing its viability for practical applications. Given its cost-effectiveness and superior activity, S-CoFe2O4/Co7Fe3/MWCNTs hold significant promise for widespread applications in overall water splitting electrocatalysis, contributing to the advancement of cleaner and sustainable fuel generation technologies.

2.
ACS Appl Mater Interfaces ; 14(9): 11457-11464, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35201741

ABSTRACT

The excellent performance and safety of direct formic acid fuel cells (DFAFCs) promote them as potential power sources for portable electronic devices. However, their real application is still highly challenging due to the poor power performance and high complexity in the fabrication of catalyst electrodes. In this work, we demonstrate a new gas diffusion electrode (GDE) with ultrathin PtCu alloy nanowire (NW) arrays in situ grown on the carbon paper gas diffusion layer surface. The growing process is achieved by a facile template- and surfactant-free self-growth assisted reduction method at room temperature. A finely controlled ion reduction process tunes the nucleation and crystal growth of Pt and Cu leading to the formation of alloy nanowires with an average diameter of about 4 nm. The GDE is directly used as the anode for DFAFCs. The results in the half-cell GDE measurement indicate that the introduction of Cu in PtCu NWs boosts the direct oxidation pathway for formic acid. The Pt3Cu1 NW GDE shows a 2.4-fold higher power density compared to the Pt NW GDE in the membrane electrode assembly test in single cells.

3.
Polymers (Basel) ; 13(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208568

ABSTRACT

High performing proton exchange membrane fuel cells (PEMFCs) that can operate at low relative humidity is a continuing technical challenge for PEMFC developers. In this work, micro-patterned membranes are demonstrated at the cathode side by solution casting techniques using stainless steel moulds with laser-imposed periodic surface structures (LIPSS). Three types of patterns, lotus, lines, and sharklet, are investigated for their influence on the PEMFC power performance at varying humidity conditions. The experimental results show that the cathode electrolyte pattern, in all cases, enhances the fuel cell power performance at 100% relative humidity (RH). However, only the sharklet pattern exhibits a significant improvement at 25% RH, where a peak power density of 450 mW cm-2 is recorded compared with 150 mW cm-2 of the conventional flat membrane. The improvements are explored based on high-frequency resistance, electrochemically active surface area (ECSA), and hydrogen crossover by in situ membrane electrode assembly (MEA) testing.

4.
ACS Appl Mater Interfaces ; 12(38): 42832-42841, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32865384

ABSTRACT

A clear understanding of catalytic activity enhancement mechanisms in fuel cell operation is necessary for a full degree translation of the latest generation of non-Pt/C fuel cell electrocatalysts into high-performance electrodes in proton-exchange membrane fuel cells (PEMFCs). In this work, PtNi nanowire (NW) array gas diffusion electrodes (GDEs) are fabricated from Pt NW arrays with Ni impregnation. A 2.84-fold improvement in the oxygen reduction reaction catalytic activity is observed for the PtNi NW array GDE (cf. the Pt NW array GDE) using half-cell GDE measurement in a 0.1 M HClO4 aqueous electrolyte at 25 °C, in comparison to only a 1.07-fold power density recorded in the PEMFC single-cell test. An ionomer is shown to significantly increase the electrochemically active surface area of the GDEs, but the PtNi NW array GDE suffers from Ni ion contamination at a high temperature, contributing to decreased catalytic activities and limited improvement in operating PEMFCs.

5.
Materials (Basel) ; 11(8)2018 Aug 19.
Article in English | MEDLINE | ID: mdl-30126232

ABSTRACT

PtNi alloy and hybrid structures have shown impressive catalytic activities toward the cathodic oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, such promise does not often translate into improved electrode performances in PEMFC devices. In this contribution, a Ni impregnation and subsequent annealing method, translatable to vertically aligned nanowire gas diffusion electrodes (GDEs), is shown in thin-film rotating disk electrode measurements (TFRDE) to enhance the ORR mass activity of Pt nanowires (NWs) supported on carbon (Pt NWs/C) by around 1.78 times. Physical characterisation results indicate that this improvement can be attributed to a combination of Ni alloying of the nanowires with retention of the morphology, while demonstrating that Ni can also help improve the thermal stability of Pt NWs. These catalysts are then tested in single PEMFCs. Lower power performances are achieved for PtNi NWs/C than Pt NWs/C. A further investigation confirms the different surface behaviour between Pt NWs and PtNi NWs when in contact with electrolyte ionomer in the electrodes in PEMFC operation. Indications are that this interaction exacerbates reactant mass transport limitations not seen with TFRDE measurements.

6.
Sci Rep ; 4: 6439, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25241800

ABSTRACT

In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm(2)) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

7.
Nanotechnology ; 20(27): 275701, 2009 Jul 08.
Article in English | MEDLINE | ID: mdl-19531867

ABSTRACT

The weak molecular attractions of nanoparticles are important because they drive self-assembly mechanisms, allow processing in dispersions e.g. of pigments, catalysts or device structures, influence disease through the attraction of viruses to cells and also cause potential toxic effects through nanoparticle interference with biomolecules and organs. The problem is to understand these small forces which pull nanoparticles into intimate contact; forces which are comparable with 3kT/2z the thermal impact force experienced by an average Brownian particle hitting a linear repulsive potential of range z. Here we describe a new method for measuring the atomic attractions of nanoparticles based on the observation of aggregates produced by these small forces. The method is based on the tracking of individual monosize nanoparticles whose diameter can be calculated from the Stokes-Einstein analysis of the tracks in aqueous suspensions. Then the doublet aggregates are distinguished because they move slower and are also very much brighter than the dispersed nanoparticles. By finding the ratio of doublets to singlets, the adhesive energy between the particles can be calculated from known statistical thermodynamic theory using assumptions about the shape of the interaction potential. In this way, very small adhesion energies of 2kT have been measured, smaller than those seen previously by atomic force microscopy (AFM) and scanning tunneling microscopy (STM).


Subject(s)
Nanoparticles/chemistry , Nanotechnology/methods , Ferric Compounds/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Models, Molecular , Nanoparticles/ultrastructure , Polystyrenes/chemistry , Thermodynamics
8.
Nanotechnology ; 20(8): 085611, 2009 Feb 25.
Article in English | MEDLINE | ID: mdl-19417459

ABSTRACT

A facile procedure for large-scale preparation of porous ZnO 1D nanomaterials with good electrical conductivity has been demonstrated for the first time. Porous ultrathin Ga-doped ZnO nanoneedles can be prepared by calcining the precursor of ultrathin Ga-doped basic zinc carbonate (BZC) nanoneedles obtained from BZC 3D superstructures, which are synthesized by a simple chemical co-precipitation method at room temperature, without using any catalyst, template or surfactant. There is evidence that the growth mechanisms of the BZC 3D superstructures and nanoneedles are correlated with the concentrations of ammonium ions and ethanol in the synthesis solution. The as-prepared porous Ga-doped ZnO nanoneedles have a thickness of only a couple of nanometers, consisting of many fine nanoparticles in a few nanometers. Electrical conductivity measurements indicate that porous ultrathin ZnO nanoneedles have a volume resistivity similar to that of the spherical Ga-doped ZnO nanoparticles. The porous nanostructures and good electrical conductivity make the porous ultrathin ZnO 1D nanoneedles promising candidates for applications in electrochemical fields.


Subject(s)
Carbonates/chemistry , Crystallization/methods , Gallium/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Zinc Compounds/chemistry , Zinc Oxide/chemistry , Electric Conductivity , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Porosity , Surface Properties
9.
J Nanosci Nanotechnol ; 9(2): 799-802, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19441395

ABSTRACT

Mesoporous carbon and mesoporous silica were prepared respectively with a same rosin-silica nanocomposite gel which was synthesized by cogelating tetra-ethyl-oxy-silane (silica source) and rosin (carbon source). Carbonizing the gel in nitrogen and then etching away silica with alkaline solution, mesoporous carbon with specific surface area larger than 800 m2/g was obtained. If calcining the gel at high temperature in air for given time, porous silica with surface area higher than 700 m2/g was done. BET measurement was employed to investigate the pore distribution and surface area of the samples. Most of the pores in both the porous carbon and porous silica were mesoscale, which makes the materials potential in enzyme supports for bio-catalyzed reaction or adsorbents for contaminants with large molecular size.

SELECTION OF CITATIONS
SEARCH DETAIL
...