Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 173: 108307, 2024 May.
Article in English | MEDLINE | ID: mdl-38547657

ABSTRACT

BACKGROUND: The functional relevance of cyclic adenosine monophosphate (cAMP)-response element-binding protein 5 (CREB5) in cancers remains elusive, despite its significance as a member of the CREB family. The current research aims to explore the role of CREB5 in multiple cancers. METHODS: Pan-cancer analysis was performed to explore the expression patterns, prognostic value, mutational landscape as well as single-cell omic, immunologic, and drug sensitivity profiles of CREB5. Furthermore, we incorporated five distinct machine learning algorithms and determined that the least absolute shrinkage and selection operator-COX (LASSO-COX) algorithm, which exhibited the highest C index, was the optimal selection. Subsequently, we constructed a prognostic model centered around CREB5-associated genes. To elucidate the biological function of CREB5 in glioma cells, several assays including cell counting kit-8 (CCK-8), wound healing, transwell, flow cytometric were performed. RESULTS: CREB5 was overexpressed in pan-cancer and was linked to unfavorable prognosis, particularly in glioma. Furthermore, genetic alterations were determined in various types of cancer, and modifications in the CREB5 gene were linked to the prognosis. The single-cell omics and enrichment analyses showed that CREB5 was predominantly expressed in malignant glioma cells and was critically involved in the regulation of various oncogenic processes. Elevated levels of CREB5 were strongly linked with the infiltration of cancer-associated fibroblasts and the Th1 subset of CD4+ T cells. The validated CREB5-associated prognostic model reliably predicted the prognosis and drug response of glioma patients. The in vitro experiments showed that CREB5 promoted glioma cell proliferation, invasion, migration, and gap phase 2/mitotic (G2/M) phase arrest and recruited M2 macrophages into glioma cells. CONCLUSION: CREB5 has the potential to act as an oncogene and a biological marker in multiple cancers, particularly glioma.


Subject(s)
Cyclic AMP Response Element-Binding Protein A , Glioma , Multiomics , Humans , Biomarkers , Glioma/diagnosis , Glioma/genetics , Immunotherapy , Prognosis
2.
Comput Math Methods Med ; 2022: 1395557, 2022.
Article in English | MEDLINE | ID: mdl-36276996

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common cancer in these days. Besides, N6-methyladenosine (m6A) plays an important role in the occurrence and development of hepatocellular carcinoma. Meanwhile, it is known to us that long noncoding RNAs (lncRNA) have the capability to control the expression of genes which means some lncRNA can adjust the expression of some m6A.Thus, it is indispensable to dig the m6A-related lncRNA in hepatocellular carcinoma about its potential regulatory mechanism and immune analysis as well as its potential drugs. In this experiment, expression profile and clinical information of lncRNA are obtained by downloading the liver cancer data set from The Cancer Genome Atlas (TCGA) database. GO enrichment analysis is used to predict potential regulatory mechanism of lncRNA. Correlation analysis of clinical parameters are calculated via chisq.test. The Cox regression model is used in univariate and multivariate analysis, and the difference is statistically significant when P < 0.05. The results show that many kinds of lncRNA have influence on the prognosis of patients with HCC, and enrichment analysis discloses some pathways that can be used to evaluate mechanism underlying in HCC. The screening of targeted drugs can provide new clues for further experiments and clinical treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Computational Biology , Gene Expression Regulation, Neoplastic , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...