Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chemosphere ; 261: 127730, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32763647

ABSTRACT

The first statewide New Jersey Biomonitoring (NJBM) of serum polychlorinated biphenyls (PCBs) was conducted from 2016 to 2018. Forty ortho-substituted PCBs were measured in serum samples collected from 920 NJ residents in compliance with the CDC method. The lipid adjusted geometric mean (GM) of ∑40PCB concentration for all the 920 measured subjects was 65.5 ng/g lipid (95% CIs: 56.9-75.4 ng/g lipid). Age stratified serum concentration showed that the lowest GM (33.3 ng/g lipid) was observed in the 20-39 years age group (n = 282), followed by a concentration of 76.05 ng/g lipid (n = 382) in the 40-59 years age group, and the highest GM (168.4 ng/g lipid) was found in the 60-74 years age group (n = 256). A survey regression model revealed that ∑40PCBs was significantly associated with age, moderately associated with geographic region, and not significantly associated with sex. The comparison of serum PCB levels in NJBM with the sequential National Health and Nutrition Examination Survey (NHANES) data suggested that the serum PCBs in NJ adults declined 52-59% at all age groups over the last decade. Positive Matrix Factorization (PMF) suggests that ongoing and recent exposure to lower molecular weight PCBs contributes about 15% to total serum PCB levels and more in younger subjects, while higher molecular weight PCBs contribute 52% of the total serum PCB levels and more in older subjects.


Subject(s)
Biological Monitoring/methods , Environmental Exposure/analysis , Environmental Pollutants/blood , Polychlorinated Biphenyls/blood , Adult , Aged , Female , Humans , Lipids/blood , Longitudinal Studies , Male , Middle Aged , New Jersey , Nutrition Surveys , Surveys and Questionnaires
2.
Environ Pollut ; 212: 584-591, 2016 May.
Article in English | MEDLINE | ID: mdl-26986089

ABSTRACT

The potential environmental impacts of engineered cerium oxide nanoparticles (CeO2 NPs) on aquatic organisms have remained largely unknown. Therefore, the laboratory study featured herein was performed to determine the fate of CeO2 NPs in an aquatic environment and their toxicity towards 14 different ciliated protist species at a specified population level. An investigation of 48 h aggregation kinetics in the Dryl's solution showed the CeO2 NPs to be relatively stable. The pH values in three test medium were too far away from PZC, which explained the stability of CeO2 NPs. CeO2 NPs generally elicited more toxicity with increasing NP concentration, following certain dose-response relationships. Nano-CeO2 resulted in greater toxicity in a particle state than when added as bulk material. LC50 values showed a negative correlation with the surface-to-volume ratio for these protists, suggesting that surface adsorption of CeO2 NPs might contribute to the observed toxicity. Additionally, acute toxic responses of 14 ciliated protist species to CeO2 NPs were not significantly phylogenetically conserved. The results of these observations provide a better insight into the potential risks of CeO2 NPs in an aquatic environment.


Subject(s)
Cerium/toxicity , Ciliophora/drug effects , Metal Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity , Adsorption , Cerium/chemistry , Ecosystem , Hydrogen-Ion Concentration , Metal Nanoparticles/chemistry , Species Specificity , Water Pollutants, Chemical/chemistry
3.
Adv Exp Med Biol ; 811: 93-109, 2014.
Article in English | MEDLINE | ID: mdl-24683029

ABSTRACT

The interaction between nanoparticles (NPs) and DNA plays an important role in the genotoxicity of NPs, and it is imperative to characterize the nano/DNA interactions and explore the underlying chemical mechanisms. In this chapter, we demonstrated systematic experimental approaches based on atomic force microscope (AFM), coupled with modeling computation to probe the binding activity of NPs with DNA and the putative genotoxicity. Using quantum dots (QDs) as a model NP, we examined the binding kinetics, binding isotherm, binding specificity, and binding mechanisms of NPs to DNA with the application of AFM. We further assessed the binding affinity between NPs and DNA by calculating their interaction energy on the basis of Derjaguin-Landau-Verwey-Overbeek (DLVO) models. The modeling results of binding affinity were validated by the NPs/DNA binding images experimentally derived by AFM. The investigation of the relationship between the binding affinity of five NPs ((QDs (+), QDs (-), silver NPs, hematite NPs, and gold NPs) for DNA with their inhibition effects on DNA replication indicated that NPs with a high binding affinity for DNA molecules exhibited higher inhibition on DNA replication. The methodology employed in this study can be extended to study the interaction of other NPs with DNA, which is anticipated to benefit the future design of safe NPs, as well as the toxicological investigations of NPs.


Subject(s)
DNA/chemistry , Microscopy, Atomic Force/methods , Nanoparticles/chemistry , Animals , DNA Damage , DNA Replication , Humans , Kinetics , Quantum Dots/chemistry
4.
Water Res ; 52: 51-62, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24462927

ABSTRACT

A mixed culture containing Dehalococcoides mccartyi strain 195 dechlorinated 1,2,3,7,8-pentachlorodibenzo-p-dioxin (1,2,3,7,8-PeCDD) and selected polychlorinated biphenyl (PCB) congeners in Aroclors 1260, 1254 and 1242. 1,2,3,7,8-PeCDD was dechlorinated to 1,3,7-trichlorodibenzo-p-dioxin (1,3,7-TrCDD) and/or 1,3,8-TrCDD via 1,3,7,8-tetrachlorodibenzo-p-dioxin (1,3,7,8-TeCDD), a pathway that excludes the production of the toxic congener 2,3,7,8-TeCDD. Dechlorination rate and extent was greatly enhanced by the addition of 1,2,3,4-tetrachlorobenzene (1,2,3,4-TeCB) as an alternate halogenated substrate and/or incubation temperature increase from 25 °C to 35 °C. The most extensive dechlorination of PCBs occurred for Aroclor 1260 with 13 major congeners making up 44.1 mol% of the original PCBs dechlorinated by 42% over 250 days at 25 °C. When 1,2,3,4-TeCB was amended as co-substrate, the extent of dechlorination increased to 82%, over 250 days. The mixed culture primarily dechlorinated the doubly-flanked chlorines on 2,3,4-, 2,3,4,6-, and 2,3,4,5,6-substituted chlorophenyl rings, whereas it primarily removed the doubly-flanked para chlorine from the 2,3,4,5-substituted chlorophenyl ring. Experiments using a 20% dilution of culture with 31.8 µg/mL 1,2,3,4-TeCDD or 2,3,4,4',5-pentachlorobiphenyl (PCB 114) as sole halogenated substrate exhibited less than 0.1 mol% dechlorination over 120 days. Further, dechlorination of PCBs and PCDDs by the fully grown culture in the absence of 1,2,3,4-TeCB eventually stopped or greatly slowed over the incubation period. Since Dehalococcoides spp. only gain energy for growth from organohalide respiration, absence of reductive dechlorination upon transfer and dilution or cessation of dechlorination after long incubation times suggest that it is unlikely that strain 195 can grow using the PCDDs or PCBs utilized in this study.


Subject(s)
Aroclors/metabolism , Chloroflexi/metabolism , Polychlorinated Dibenzodioxins/analogs & derivatives , Chlorobenzenes/chemistry , Chlorobenzenes/metabolism , Chloroflexi/growth & development , Environmental Pollutants/chemistry , Environmental Pollutants/metabolism , Halogenation , Polychlorinated Dibenzodioxins/metabolism , Temperature
5.
ACS Nano ; 7(11): 9664-74, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24093667

ABSTRACT

Predictive models are beneficial tools for researchers to use in prioritizing nanoparticles (NPs) for toxicological tests, but experimental evaluation can be time-consuming and expensive, and thus, priority should be given to tests that identify the NPs most likely to be harmful. For characterization of NPs, the physical binding of NPs to DNA molecules is important to measure, as interference with DNA function may be one cause of toxicity. Here, we determined the interaction energy between 12 types of NPs and DNA based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) model and then predicted the affinity of the NPs for DNA. Using the single-molecule imaging technique known as atomic force microscopy (AFM), we experimentally determined the binding affinity of those NPs for DNA. Theoretical predictions and experimental observations of the binding affinity agreed well. Furthermore, the effect of NPs on DNA replication in vitro was investigated with the polymerase chain reaction (PCR) technique. The results showed that NPs with a high affinity for DNA strongly inhibited DNA replication, whereas NPs with low affinity had no or minimal effects on DNA replication. The methodology here is expected to benefit the genotoxicological testing of NPs as well as the design of safe NPs.


Subject(s)
DNA Replication/drug effects , DNA/chemistry , DNA/drug effects , Nanoparticles/chemistry , DNA, Bacterial/drug effects , Histones/chemistry , Humans , Microscopy, Atomic Force , Models, Statistical , Nanotechnology/methods , Polymerase Chain Reaction , Quantum Dots
6.
Environ Sci Technol ; 46(12): 6612-20, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22568653

ABSTRACT

Polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are persistent organic pollutants targeted by the Stockholm Convention. Both contain aromatic chlorines and are subject to microbial dechlorination. Dechlorination of PCBs in sewers in the Delaware River basin was recently reported. In this work, two data sets on concentrations of PCBs and PCBs+PCDD/Fs in wastewater treatment plant influents and effluents were analyzed to look for evidence that these compounds undergo dechlorination in the sewers of the New York/New Jersey Harbor area. The two data sets come from the Contamination Assessment and Reduction Project (CARP) and were analyzed via Positive Matrix Factorization (PMF). Analysis of the data set containing only PCB concentrations suggests that PCBs are dechlorinated in the sewers of the NY/NJ Harbor via the same pathways observed in the sewers of the Delaware River basin and that advanced dechlorination of PCB mixtures is more likely to occur in combined sewers vs separate sanitary sewers. When the combined data set of PCBs+PCDD/Fs was analyzed, the factor containing PCB dechlorination products also contained high proportions of 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD), a known product of the dechlorination of octachlorodibenzo-p-dioxin (OCDD), and other known dechlorination products of PCDD/Fs. Despite being the most abundant PCDD/F congener in all of the samples in the database, OCDD was a minor component in the dechlorination factor. This provides the first evidence that PCDD/Fs may be dechlorinated in sewers.


Subject(s)
Benzofurans/analysis , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Dibenzofurans, Polychlorinated , New York City
7.
Chemosphere ; 83(6): 792-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21421250

ABSTRACT

The New York/New Jersey Harbor (also known as the Hudson River Estuary) is heavily contaminated with polychlorinated biphenyls (PCBs) arising in part from inputs from the Upper Hudson River, which is a Superfund site containing historical PCB contamination, and also due to inputs from the New York City metropolitan area. The Contamination Assessment and Reduction Project (CARP) measured PCBs and other contaminants in ambient water samples collected throughout the Harbor region during 1998-2001. In order to investigate the sources of PCBs to the NY/NJ Harbor, this data base of PCB concentrations was analyzed using Positive Matrix Factorization (PMF). This analysis resolved seven factors that are thought to be associated with sources such as the Upper Hudson River, storm water runoff, combined sewer overflows (CSOs), and wastewater effluents. The PMF model also produced a factor that appears to be related to sites contaminated with Aroclor 1260. To the extent that the NY/NJ Harbor is typical of urbanized estuaries throughout the United States, these results suggest that storm water runoff is probably a significant source of PCBs to surface waters in urban areas.


Subject(s)
Polychlorinated Biphenyls/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , Fresh Water/chemistry , Geologic Sediments/chemistry , New Jersey , New York , Oceans and Seas , Water Pollution, Chemical/statistics & numerical data
8.
Environ Sci Technol ; 44(19): 7534-40, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20828204

ABSTRACT

One of the few pathways for environmental transformation of polychlorinated biphenyls (PCBs) is microbial dechlorination under anaerobic conditions, which is reported to occur in contaminated sediments of rivers, lakes and harbors. The goal of this work was to determine whether PCB dechlorination occurs in built waste treatment environments. We analyzed a large database on PCB congener concentrations in effluents and some influents of facilities in the Delaware River Basin. Positive matrix factorization was used to identify the sources of PCBs and to look for evidence of dechlorination. Seven factors were resolved from the data set of 89 congeners in 645 samples. Two of the resolved factors represented dechlorination signals. One of these was dominated by PCBs 4 and 19 and represents an advanced stage of dechlorination of Aroclors to di- and trichlorinated congeners. This dechlorination signal was most prevalent in effluents from sites with contaminated groundwater and from wastewater treatment plants (WWTPs) that serve combined sewers or treat landfill leachate. The other dechlorination signal appeared to represent an intermediate stage of dechlorination, because it was dominated by two coeluting groups of tetrachlorinated congeners: PCBs 44 + 47 + 65 and 45 + 51. This partial dechlorination signal was most prevalent in the 40 WWTPs with separate (sanitary) sewer systems, where it often comprised more than 20% of the PCBs in the effluents. Both dechlorination signals were present in WWTP influents, but were not observed in stormwater runoff, suggesting that dechlorination occurs in sewers. This work represents the first convincing evidence of PCB dechlorination occurring outside of contaminated aquatic sediments or anaerobic digesters. The results suggest that PCBs are dechlorinated by anaerobic bacteria in sewers, landfills, and contaminated groundwater. These two dechlorination signals comprise about 19% of the total loads of PCBs to the Delaware River from the sampled dischargers.


Subject(s)
Chlorine/chemistry , Polychlorinated Biphenyls/chemistry , Refuse Disposal , Water Pollutants, Chemical/chemistry , Fresh Water/chemistry
9.
Environ Sci Technol ; 44(8): 2816-21, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20384375

ABSTRACT

The non-Aroclor congener 3,3'-dichlorobiphenyl (PCB 11) has been recently detected in air, water, biota, sediment, and suspended sediment. Although it has been known since at least the 1970s that this congener is produced inadvertently during the production of diarylide yellow pigments, this work presents the first evidence that the use of these pigments in consumer goods results in the dispersion of PCB 11 throughout the environment at levels that are problematic in terms of achieving water quality standards for the sum of polychlorinated biphenyls (PCBs). In this work, PCB 11 is measured at ppb levels in consumer goods that are likely to be discarded in ways that allow them to enter wastewater treatment plants and combined sewer overflows, including newspapers, magazines, cardboard boxes used for food packaging, and plastic bags. Also, using data sets acquired for the purpose of calculating total maximum daily loads (TMDLs) for PCBs, PCB 11 loads to the New York/New Jersey Harbor and Delaware River are calculated. Despite the fact that there are no known manufacturers of diarylide yellow pigments in the Delaware River watershed, the loads of PCB 11 to the Delaware River exceed the TMDL for the sum of PCBs by nearly a factor of 2. The ratio of PCB 11 to a characteristic dechlorination end product, PCB 4 (2,2'-dichlorobiphenyl), in these data sets indicates that dechlorination is not a significant source of PCB 11 in these systems. In the upper Hudson River, where extensive dechlorination of heavy PCB congeners occurs, the ratio is just 0.012. In contrast, downstream in the NY/NJ Harbor as well as in the Delaware River the ratio is much higher and more variable. Pigment use therefore appears to be the main source of PCB 11 in these systems, and this congener is likely to present a significant obstacle to achieving PCB water quality standards throughout the United States.


Subject(s)
Environmental Pollutants/analysis , Polychlorinated Biphenyls/analysis
10.
Environ Sci Technol ; 43(5): 1287-92, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19350892

ABSTRACT

Passive air samplers were deployed at 32 sites across the Philadelphia metropolitan area to investigate the types and locations of atmospheric polychlorinated biphenyl (PCB) sources in a typical U.S. city. PCB levels varied over a factor of approximately 30 and displayed strong spatial gradients. Two regions of high PCB levels were observed, one in the center of Philadelphia and another on the city's south side. These two maxima are thought to represent urban vs. industrial sources. A Gaussian diffusion model was found to adequately describe the spatial gradients for the primary (center city) concentration maximum. Higher molecular weight PCBs were more prevalent at the more urban locations, in agreement with other urban gradient studies and suggesting that re-emission (i.e., secondary sources) of PCBs are important Positive matrix factorization analysis resolved two factors that are interpreted to represent light Aroclors and a heavier industrial source concentrated atthe secondary maximum on the city's south side. The results generally corroborate an earlier study in which data from the New Jersey Atmospheric Deposition Network site in Camden, NJ, was used to investigate source types and locations. Additionally, the non-Aroclor congener PCB 11 (3,3'-dichlorobiphenyl) was detected in all samples.


Subject(s)
Air Pollutants/analysis , Air/analysis , Cities , Polychlorinated Biphenyls/analysis , Diffusion , Geography , Humans , Models, Chemical , Philadelphia , Population Density
11.
Environ Sci Technol ; 42(11): 4044-51, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18589964

ABSTRACT

The Delaware River, similar to many surface water bodies throughout the United States, is impaired due to polychlorinated biphenyl (PCB) concentrations that exceed the federal water quality standard. A total maximum daily load (TMDL) for PCBs in the Delaware was promulgated in 2003 after construction of a detailed water quality model that relied upon estimated PCB loadings from sources such as wastewater treatment plant effluents, contaminated sites, and tributaries. The purpose of this project was to corroborate this loading estimate by analyzing ambient water column data on PCB concentrations in the Delaware River via positive matrix factorization (PMF) in order to identify covarying congener patterns that are, in theory, associated with sources. The PMF program identified six factors (covarying congener patterns) that appear to be associated with sources, such as sediment resuspension, contaminated sites, and wastewater effluents and combined sewer overflows (CSOs). PCB 11 was found to be a useful tracer for CSO/ wastewater inputs despite the fact that no known dye manufacturers exist in the watershed. This analysis generally corroborates the PCB loading estimate used in the water quality model.


Subject(s)
Polychlorinated Biphenyls/analysis , Rivers , Water Pollutants, Chemical/analysis , Delaware , Environmental Monitoring/statistics & numerical data , Geologic Sediments , Uncertainty , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...