Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686992

ABSTRACT

Dissection of neural circuitry underlying behaviors is a central theme in neurobiology. We have previously proposed the concept of chemoconnectome (CCT) to cover the entire chemical transmission between neurons and target cells in an organism and created tools for studying it (CCTomics) by targeting all genes related to the CCT in Drosophila. Here we have created lines targeting the CCT in a conditional manner after modifying GFP RNA interference, Flp-out, and CRISPR/Cas9 technologies. All three strategies have been validated to be highly effective, with the best using chromatin-peptide fused Cas9 variants and scaffold optimized sgRNAs. As a proof of principle, we conducted a comprehensive intersection analysis of CCT genes expression profiles in the clock neurons, uncovering 43 CCT genes present in clock neurons. Specific elimination of each from clock neurons revealed that loss of the neuropeptide CNMa in two posterior dorsal clock neurons (DN1ps) or its receptor (CNMaR) caused advanced morning activity, indicating a suppressive role of CNMa-CNMaR on morning anticipation, opposite to the promoting role of PDF-PDFR on morning anticipation. These results demonstrate the effectiveness of conditional CCTomics and its tools created here and establish an antagonistic relationship between CNMa-CNMaR and PDF-PDFR signaling in regulating morning anticipation.


Subject(s)
CRISPR-Cas Systems , Neurons , Animals , Neurons/metabolism , Neurons/physiology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Connectome
2.
Zookeys ; 1148: 65-78, 2023.
Article in English | MEDLINE | ID: mdl-37213805

ABSTRACT

Diglyphus Walker, 1844 (Hymenoptera: Eulophidae) is an economically important genus including species acting as biocontrol agents against agromyzid leafminer pests. A new species of Diglyphus, Diglyphusdifasciatus Liu, Hansson & Wan, sp. nov., was discovered during the identification of agromyzid leafminers and their associated parasitoid wasps collected from 2016 to 2022 in China, based on morphological characteristics and molecular analyses of COI, ITS2 and 28S genes. Diglyphusdifasciatus is similar to D.bimaculatus Zhu, LaSalle & Huang, distinguished by two interconnected infuscate vertical bands on the fore wing and the color of the scape. Molecular data support D.difasciatus and D.bimaculatus as two different species. The mean genetic distances between D.difasciatus and D.bimaculatus were 11.33%, 8.62%, and 0.18%, based on the COI, ITS2, and 28S genes, respectively.

3.
J Econ Entomol ; 116(1): 256-262, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36625153

ABSTRACT

Hymenopteran parasitoids generally show a haplo-diploid sex determination system. Haploid males are produced from unfertilized eggs, whereas diploid females develop from fertilized eggs (arrhenotokous). In some cases, diploid females develop from unfertilized eggs (thelytokous). Diglyphus wani (Hymenoptera: Eulophidae) is a biological control agent for agromyzid leafminers and have arrhenotokous and thelytokous strains. However, the morphological characteristics of two strains of D. wani are so similar that it is difficult to accurately distinguish them based on morphology. Here, a rapid molecular identification method was developed based on the mitochondrial gene cytochrome c oxidase I (COI) and one-step multiplex PCR. Two primer combinations, PC1 (Ar-F1/Th-F1/WR2) and PC2 (Ar-F1/Th-F4/WR2), were designed and repeatedly screened to distinguish two strains simultaneously, of which two special forward primers Th-F1/Th-F4 were used for the thelytokous strain and one special forward primer Ar-F1 was used for the arrhenotokous strain. In addition, a common reverse primer, WR2, was used for both strains. The PC1 and PC2 PCR assays were effective in distinguishing the two strains at different developmental stages and field colonies. This method provides a reliable, highly sensitive, and cost-effective tool for the rapid identification of the two strains of D. wani.


Subject(s)
Hymenoptera , Wasps , Female , Male , Animals , Hymenoptera/genetics , Multiplex Polymerase Chain Reaction , Biological Control Agents
4.
Front Genet ; 13: 1061100, 2022.
Article in English | MEDLINE | ID: mdl-36755874

ABSTRACT

In Hymenoptera species, the reproductive mode is usually arrhenotoky, where haploid males arise from unfertilized eggs and diploid females from fertilized eggs. In addition, a few species reproduce by thelytoky, where diploid females arise from unfertilized eggs. Diploid females can be derived through various cytological mechanisms in thelytokous Hymenoptera species. Hitherto, these mechanisms were revealed mainly in endosymbiont-induced thelytokous Hymenoptera species. In contrast, thelytokous Hymenoptera species in which a reproductive manipulator has not been verified or several common endosymbionts have been excluded were paid less attention in their cytological mechanisms, for instance, Diglyphus wani (Hymenoptera: Eulophidae). Here, we investigated the cytological mechanism of D. wani using cytological methods and genetic markers. Our observations indicated that the diploid karyotypes of two strains of D. wani consist of four pairs of relatively large metacentric chromosomes and one pair of short submetacentric chromosomes (2n = 10). The arrhenotokous strains could complete normal meiosis, whereas the thelytokous strain lacked meiosis and did not expulse any polar bodies. This reproductive type of lacking meiosis is classified as apomictic thelytoky. Moreover, a total of 636 microsatellite sequences were obtained from thelytokous D. wani, dominated by dinucleotide repeats. Genetic markers results showed all three generations of offspring from thelytokous strain maintained the same genotype as their parents. Our results revealed that D. wani is the first eulophid parasitoid wasp in Hymenoptera whose thelytoky was not induced by bacteria to form an apomictic thelytoky. These findings provide a baseline for future inner molecular genetic studies of ameiotic thelytoky.

5.
Zookeys ; 1071: 109-126, 2021.
Article in English | MEDLINE | ID: mdl-34887696

ABSTRACT

Diglyphus species are ecologically and economically important on agromyzid leafminers. In 2018, a thelytokous species, Diglyphuswani Liu, Zhu & Yefremova, was firstly reported and described. Subsequently, the arrhenotokous D.wani were discovered in Yunnan and Guizhou Provinces of China. We compared the morphological characteristics of thelytokous and arrhenotokous strains. However, the females of two strains had a strongly similar morphology and showed subtle differences in fore- and hind-wings. The difference was that forewing of arrhenotokous female was with denser setae overall, showing that costal cell with 2 ~ 4 rows of setae on dorsal surface and the setae of basal cell with 15 ~ 21 hairs and forewing of thelytokous female was with two rows of setae on dorsal surface and basal cell with 10 ~ 15 hairs generally. The setation beneath the marginal vein of the hind-wing of arrhenotokous female is denser than the same area of thelytokous female. To explore the genetic divergence between thelytokous and arrhenotokous strains of D.wani, the mitochondrial and nuclear gene were applied and sequenced. The polygenic analyses revealed that two strains can be distinguished by COI, ITS1 and ITS2. The mean sequence divergence between the two strains was 0.052, 0.010 and 0.007, respectively. Nevertheless, the 28S gene was unfeasible due to its containing a sharing haplotype between different strains. The two strains of D.wani are dominant parasitoids against agromyzid leafminers and such effective discernible foundation provides future in-depth studies on biological characteristics, along with insight into field application of two strains of D.wani.

6.
Insects ; 13(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35055852

ABSTRACT

In Hymenoptera parasitoids, the reproductive mode is arrhenotoky, while a few species reproduce by thelytoky. The thelytoky of Hymenoptera parasitoids is generally genetically determined by the parasitoids themselves or induced by bacteria, including Wolbachia, Cardinium, and Rickettsia. Diglyphus wani (Hymenoptera: Eulophidae), a recently reported thelytokous species is a main parasitoid attacking agromyzid leafminers. To assess whether endosymbionts induce thelytoky in D. wani, we performed universal PCR detection and sequenced the V3-V4 region of 16S ribosomal RNA gene. In addition, bacteria were removed through high-temperature and antibiotic treatments, and the localized bacteria were detected using FISH. Based on general PCR detection, Wolbachia, Cardinium, Rickettsia, Arsenophonus, Spiroplasma, and Microsporidia were absent in laboratory and field individuals of thelytokous D. wani. Furthermore, 16S rRNA gene sequencing revealed that the dominant endosymbionts in thelytokous D. wani were not reproductive manipulators. High-temperature and antibiotic treatment for five consecutive generations cannot reverse the thelytokous pattern of D. wani, and no male offspring were produced. Moreover, no bacterial spots were found in the ovaries of D. wani. Thus, it is considered that the thelytoky of D. wani does not result in the presence of endosymbionts. This species is thus the second reported eulophid parasitoid whose thelytoky appears not to be associated with endosymbionts.

SELECTION OF CITATIONS
SEARCH DETAIL
...