Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Manage ; 341: 118111, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37156025

ABSTRACT

Discharge of saline organic wastewater is increasing worldwide, yet how salt stress disrupts the microbial community's structure and metabolism in bioreactors has not been systematically investigated. The non-adapted anaerobic granular sludge was inoculated into wastewater with varying salt concentration (ranging from 0% to 5%) to examine the effects of salt stress on the structure and function of the anaerobic microbial community. Result indicated that salt stress had a significant impact on the metabolic function and community structure of the anaerobic granular sludge. Specifically, we observed a notable reduction in methane production in response to all salt stress treatments (r = -0.97, p < 0.01), while an unexpected increase in butyrate production (r = 0.91, p < 0.01) under moderate salt stress (1-3%) with ethanol and acetate as carbon sources. In addition, analysis of microbiome structures and networks demonstrated that as the degree of salt stress increased, the networks exhibited lower connectance and increased compartmentalization. The abundance of interaction partners (methanogenic archaea and syntrophic bacteria) decreased under salt stress. In contrast, the abundance of chain elongation bacteria, specifically Clostridium kluyveri, increased under moderate salt stress (1-3%). As a consequence, the microbial carbon metabolism patterns shifted from cooperative mode (methanogenesis) to independent mode (carbon chain elongation) under moderate salt stress. This study provides evidence that salt stress altered the anaerobic microbial community and carbon metabolism characteristics, and suggests potential guidance for steering the microbiota to promote resource conversion in saline organic wastewater treatment.


Subject(s)
Microbiota , Wastewater , Sewage/chemistry , Anaerobiosis , Carbon/metabolism , Bacteria/metabolism , Bioreactors/microbiology , Methane
SELECTION OF CITATIONS
SEARCH DETAIL