Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.983
Filter
2.
Opt Lett ; 49(11): 3030-3033, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824320

ABSTRACT

We achieve dynamically tunable dual quasi-bound states in the continuum (quasi-BICs) by implementing them in a silicon-graphene multilayer composite structure and utilize the quasi-BIC modes to achieve ultra-large group delays (velocity of light slows down 105 times), showing 2-3 orders of magnitude higher than the group delays of previous electromagnetically induced transparency modes. The double-layer graphene holds great tuning capability and leads to the dramatically reduced group delay from 1929.82 to 1.58 ps with only 100 meV. In addition, the log-linear variation rule of group delay with Fermi level (Ef) in the range of 0-10 meV is analyzed in detail, and the double-logarithmic function relationship between the group delay and quality factor (Q-factor) is theoretically verified. Finally, the quantitative modulation of the optical storage is further realized in this basis. Our research provides ideas for the reform and upgrading of slow optical devices.

3.
ACS Sens ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830243

ABSTRACT

Ribosomal RNA (rRNA) plays a vital role in binding amino acids together, which dictates the primary structure of a protein. Visualization of its intracellular distribution and dynamics during protein synthesis enables a better understanding of the correlated biological essence. However, appropriate tools targeting live cell rRNA that are capable of multimodal imaging at the nanoscale are still lacking. Here, we rationally designed a series of terpyridine ammonium iridium(III) complexes, one of which is capable of selectively labeling rRNA in living cells. Its metal core and photostable nature allow further super-resolution STED imaging of rRNA found on the rough endoplasmic reticulum at a ∼40 nm resolution that is well correlated under correlative light and electron microscopy (CLEM). Interestingly, the Ir(III) complex demonstrated rRNA dynamics in living cells while boosting protein synthesis at the nanoscale. Our work offers a versatile tool to visualize rRNA synchronously under optical and electron microscopy, which provides a better understanding of rRNA evolution in living systems.

4.
Haematologica ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721728

ABSTRACT

Not available.

5.
Plant Dis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720535

ABSTRACT

Cassava (Manihot esculenta) is a perennial crop of the family Euphorbiaceae, widely cultivated due to its phytopharmacological and economic values in China. In November 2022, a leaf spot disease on cassava was observed in Zhanjiang, Guangdong, China (21.17° N, 110.18° E), with 100% disease incidence. About 80 % of leaves were covered with spots on the infected plants. Typical symptoms initially appeared as irregular water-soaked lesions that became brown and whitish with the progress of the disease, lesions gradually expanded and coalesced, causing leaf withering, drying and final fall. Tissues (4 to 5 mm) were excised from the margin of lesions, sterilized in 3% H2O2 solution for 3 min, rinsed three times with sterile water, placed on potato dextrose agar (PDA) medium (containing 50mg/L penicillin), and incubated at 25-28 °C. Ten single hypha isolates with similar morphology were obtained and further purified as single conidium subcultures. The colony was grey whitish with sparse aerial mycelium and colony diameter reached 70.4 mm after four days incubation at 25-28℃ in the dark. Black pycnidia occurring as clusters were spherical or irregular, erumpent at maturity, often with a creamy whitish, conidial cirrus extruding from ostiole after 30-days incubation. Conidiophores were hyaline, smooth, unbranched. Alpha conidia were bi-guttulate, hyaline, ellipsoidal, aseptate, with dimensions of 5.1~7.5×1.9~3.4µm (mean 6.2×2.8 µm, n>50). Beta conidia were abundant, filiform, hyaline, smooth, curved in a hooked shape, with a truncate base and dimensions of 18.5-26.4 × 0.6-1.2µm (mean 23.4 × 1.0 µm, n= 40) . Gamma conidia were not observed. The morphological characteristics were similar to those of Diaporthe ueckeri (Udayanga et al. 2015). The internal transcribed spacer (ITS) region, large subunit (LSU) rRNA sequence, actin (ACT), calmodulin (CAL), histone H3 (HIS), translation elongation factor 1-alpha (TEF1-α), and ß-tubulin (TUB) genes of a representative isolate CCAS-MS-6 (ACCC 35497) were amplified and sequenced using primer pairs: ITS5/ITS4, LR0R/LR5, ACT-512F/ACT-783R, CAL228F/CAL737R, CYLH3F/ H3-1b, EF1-728F/ EF1-986R and Bt2a/Bt2b (Gao et al 2017;Udayanga et al 2014). All sequences were deposited in GenBank (OR361671, OR361672, and OR365605-9). BLAST search showed high similarities with sequences of Diaporthe ueckeri (Tab 1). Maximum likelihood analyses of the concatenated data of CAL, HIS, ITS, TEF and TUB using Mega 11 placed CCAS-MS-6 in the D. ueckeri clade. Thus, the fungus was identified as D. ueckeri. Three one-year old healthy plants were used for pathogenicity tests in pots. Two 15-day old leaves of each plant were cleaned with 75% alcohol, three sites on each leaf were wounded, and sites on one of the leaf were covered with fungal plugs from 15-day-old cultures on PDA, and sites on the other leaf with PDA plugs as a control. All plants were kept at ambient temperature (about 28℃) and covered with plastic bags containing sterile wet cotton to maintain the humidity. Seven days after inoculation, all inoculated sites showed symptoms of necrosis, while control sites showed no symptoms. The same fungus identified on the basis of morphological and molecular criteria was reisolated from symptomatic inoculated leaves. In China, D. ueckeri had been reported to cause diseases on Eucalyptus citriodora, Camellia sinensis, and Michelia shiluensis (Gao et al 2016; Liao et al 2023; Yi et al 2018), this is the first report on M. esculenta. The definition of the disease etiology is a prerequisite to develop effective management strategies.

6.
Cancer Sci ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710213

ABSTRACT

Circular RNAs (circRNAs) have emerged as crucial regulators in tumor progression, yet their specific role in hepatocellular carcinoma (HCC) remains largely uncharacterized. In this study, we utilized high-transcriptome sequencing to identify the upregulation of circESYT2 (hsa_circ_002142) in HCC tissues. Functional experiments carried out in vivo and in vitro revealed that circESYT2 played a significant role in maintaining the growth and metastatic behaviors of HCC. Through integrative analysis, we identified enolase 2 (ENO2) as a potential target regulated by circESYT2 through the competitive endogenous RNA sponge mechanism. Additional gain- or loss-of-function experiments indicated that overexpression of circESYT2 led to a tumor-promoting effect, which could be reversed by transfection of microRNA-665 (miR-665) mimic or ENO2 knockdown in HCC cells. Furthermore, the direct interaction between miR-665 and circESYT2 and between miR-665 and ENO2 was confirmed using RNA immunoprecipitation, FISH, RNA pull-down, and dual-luciferase reporter assays, highlighting the involvement of the circESYT2/miR-665/ENO2 axis in promoting HCC progression. These findings shed light on the molecular characteristics of circESYT2 in HCC tissues and suggest its potential as a biomarker or therapeutic target for HCC treatment.

7.
Opt Lett ; 49(10): 2733-2736, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748148

ABSTRACT

A novel approach-integrating a simulated annealing (SA) algorithm with deep learning (DL) acceleration-is presented for the rapid and accurate development of terahertz perfect absorbers through forward prediction and backward design. The forward neural network (FNN) effectively deduces the absorption spectrum based on metasurface geometry, resulting in an 80,000-fold increase in computational speed compared to a full-wave solver. Furthermore, the absorber's structure can be precisely and promptly derived from the desired response. The incorporation of the SA algorithm significantly enhances design efficiency. We successfully designed low-frequency, high-frequency, and broadband absorbers spanning the 4 to 16 THz range with an error margin below 0.02 and a remarkably short design time of only 10 min. Additionally, the proposed model in this Letter introduces a novel, to our knowledge, method for metasurface design at terahertz frequencies such as the design of metamaterials across optical, thermal, and mechanical domains.

8.
Psychiatry Res ; 337: 115926, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38733930

ABSTRACT

The optimal duration of antidepressant treatment for patients with major depressive disorder to reduce the risk of relapse after discontinuation remains uncertain. Medline, Cochrane Central Register of Controlled Trials, and Embase were systematically searched for randomized controlled trials (RCTs) with a discontinuation design. A single-group summary meta-analysis was performed to calculate 6-month relapse rates after discontinuation. Meta-regression with restricted cubic splines was performed to model the non-linear relationship between treatment duration and relapse rate after discontinuation. Thirty-five RCTs were included. The relapse rate after discontinuation was approximately 34.81 % at 6 months and 45.12 % at 12 months. After controlling for covariates, the meta-analysis shows that the duration of treatment is associated with the risk of relapse after discontinuation in a non-linear curve, with a relatively higher risk of relapse observed for a duration of less than three months. There appears to be no further reduction in the risk of relapse when treatment is continued for over six months. Our results indicate the importance of at least three months of treatment to avoid the relatively high risk of relapse after discontinuation. The additional benefit of longer treatment remains to be proven.

9.
Sci Rep ; 14(1): 11701, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778034

ABSTRACT

Due to the lack of sufficient labeled data for the prostate and the extensive and complex semantic information in ultrasound images, accurately and quickly segmenting the prostate in transrectal ultrasound (TRUS) images remains a challenging task. In this context, this paper proposes a solution for TRUS image segmentation using an end-to-end bidirectional semantic constraint method, namely the BiSeC model. The experimental results show that compared with classic or popular deep learning methods, this method has better segmentation performance, with the Dice Similarity Coefficient (DSC) of 96.74% and the Intersection over Union (IoU) of 93.71%. Our model achieves a good balance between actual boundaries and noise areas, reducing costs while ensuring the accuracy and speed of segmentation.


Subject(s)
Prostate , Prostatic Neoplasms , Semantics , Ultrasonography , Male , Humans , Ultrasonography/methods , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Deep Learning , Image Processing, Computer-Assisted/methods , Algorithms , Image Interpretation, Computer-Assisted/methods
10.
J Colloid Interface Sci ; 671: 67-77, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38788425

ABSTRACT

With the wide application of electromagnetic waves in national defense, communication, navigation and home appliances, the electromagnetic pollution problem is becoming more and more prominent. Therefore, high-performance, and low-density composite wave-absorbing materials have attracted much attention. In this paper, three-dimensional (3D) network structures of flower-like 1T/2H Molybdenum disulfide nanosheets anchored to carbon fibers (1T/2H MoS2/CNFs) were prepared by electrostatic spinning technique and calcination process. The morphology and electromagnetic wave absorption properties were tuned by changing the content of flower-like MoS2. The optimized 1T/2H MoS2/CNFs composite exhibits superior electromagnetic wave absorption with minimum reflection (RLmin) of -42.26 dB and effective absorption bandwidth (EAB) of 6.48 GHz at 2.5 mm. Multi-facts contribute to the super performance. First, the uniquely designed nanosheet and 3D interconnected networks leads to multiple reflection and scattering of electromagnetic waves, which promotes the attenuation of electromagnetic waves. Second, the propriate content of CNFs and MoS2 with different phase regulates its impedance matching characteristic. Third, Numerous heterogeneous interfaces existed between CNFs and MoS2, 1T and 2H MoS2 phase results in interface polarization. Besides, the 1T/2H MoS2 rich in defects induces defect polarization, improving the dielectric loss. Furthermore, the electromagnetic wave absorption performance was proved via radar reflectance cross section simulation. This work illustrates 1T/2H MoS2/CNFs is a promising material for electromagnetic absorption with wide bandwidth, strong absorption, low density, and high thermal stability.

11.
PLoS One ; 19(5): e0304300, 2024.
Article in English | MEDLINE | ID: mdl-38781179

ABSTRACT

BACKGROUND: Numerous observational studies have reported an association between frailty and atherosclerosis. However, the causal relationship between frailty and the occurrence of atherosclerosis in different anatomical sites remains unclear. we conducted a bidirectional Mendelian randomization (MR) study to evaluate the causal relationship between the frailty index (FI), and both systemic atherosclerosis and lipids. METHODS: We obtained summary statistics from large-scale genome-wide association studies (GWAS) of various phenotypes, including frailty (n = 175,226), coronary atherosclerosis (n = 56,685), cerebral atherosclerosis (n = 150,765), peripheral arterial disease (PAD) (n = 361,194), atherosclerosis at other sites (n = 17,832), LDL-C (n = 201,678), HDL-C (n = 77,409), and triglycerides (n = 78,700). The primary MR analysis employed the inverse variance weighted (IVW) method. Furthermore, to assess reverse causality, we employed inverse MR and multivariate MR analysis. RESULTS: Genetically predicted FI showed positive associations with the risk of coronary atherosclerosis (OR = 1.47, 95% CI 1.12-1.93) and cerebral atherosclerosis (OR = 1.99, 95% CI 1.05-3.78), with no significant association (p >0.05) applied to peripheral arterial disease and atherosclerosis at other sites. Genetically predicted FI was positively associated with the risk of triglycerides (OR = 1.31, 95% CI 1.08-1.59), negatively associated with the risk of LDL-C (OR = 0.87, 95% CI 0.78-0.97), and showed no significant association with the risk of HDL-C (p >0.05). Furthermore, both reverse MR and multivariate MR analyses demonstrated a correlation between systemic atherosclerosis, lipids, and increased FI. CONCLUSION: Our study elucidated that genetically predicted FI is associated with the risk of coronary atherosclerosis and cerebral atherosclerosis by the MR analysis method, and they have a bidirectional causal relationship. Moreover, genetically predicted FI was causally associated with triglyceride and LDL-C levels. Further understanding of this association is crucial for optimizing medical practice and care models specifically tailored to frail populations.


Subject(s)
Atherosclerosis , Frailty , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Atherosclerosis/genetics , Frailty/genetics , Risk Factors , Triglycerides/blood , Polymorphism, Single Nucleotide , Female , Coronary Artery Disease/genetics , Male , Cholesterol, LDL/blood , Aged , Cholesterol, HDL/blood
12.
Entropy (Basel) ; 26(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38785602

ABSTRACT

In the realm of federated learning (FL), the exchange of model data may inadvertently expose sensitive information of participants, leading to significant privacy concerns. Existing FL privacy-preserving techniques, such as differential privacy (DP) and secure multi-party computing (SMC), though offering viable solutions, face practical challenges including reduced performance and complex implementations. To overcome these hurdles, we propose a novel and pragmatic approach to privacy preservation in FL by employing localized federated updates (LF3PFL) aimed at enhancing the protection of participant data. Furthermore, this research refines the approach by incorporating cross-entropy optimization, carefully fine-tuning measurement, and improving information loss during the model training phase to enhance both model efficacy and data confidentiality. Our approach is theoretically supported and empirically validated through extensive simulations on three public datasets: CIFAR-10, Shakespeare, and MNIST. We evaluate its effectiveness by comparing training accuracy and privacy protection against state-of-the-art techniques. Our experiments, which involve five distinct local models (Simple-CNN, ModerateCNN, Lenet, VGG9, and Resnet18), provide a comprehensive assessment across a variety of scenarios. The results clearly demonstrate that LF3PFL not only maintains competitive training accuracies but also significantly improves privacy preservation, surpassing existing methods in practical applications. This balance between privacy and performance underscores the potential of localized federated updates as a key component in future FL privacy strategies, offering a scalable and effective solution to one of the most pressing challenges in FL.

13.
Geriatr Gerontol Int ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766995

ABSTRACT

AIM: Extending working life is considered as an important initiative to respond to the population aging and pension payment dilemma. This study aimed to investigate whether work after retirement is related to improved health-related quality of life. METHODS: We used two waves of data from the China Health and Retirement Longitudinal Study in 2011 and 2018. Work after retirement was ascertained based on self-reported retirement and work status, and health-related quality of life (HRQOL) was measured with the three-level EuroQol five-dimensions. The impact of work after retirement on HRQOL was analyzed using the propensity score matching with difference-in-difference approach. RESULTS: A total of 1043 retirees were included. The results showed that work after retirement was associated with significant improvement in HRQOL among retirees (ß = 0.072, P < 0.001). Heterogeneity analyses did not show specificity on sex (P for sex interaction >0.05), but older-aged retirees seemed more sensitive to the benefits of work after retirement on HRQOL than their younger-aged counterparts (≥65 years: ß = 0.167, P < 0.001 vs <65 years: ß = -0.047, P > 0.05; P for age interaction = 0.010). CONCLUSIONS: Work after retirement shows a positive impact on HRQOL among community-dwelling adults in China. Policy-makers should take the health of retirees into account when implementing policies related to delayed retirement, and reduce health inequity. Geriatr Gerontol Int 2024; ••: ••-••.

14.
Cells ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38727270

ABSTRACT

Self-renewal and differentiation are two characteristics of hematopoietic stem cells (HSCs). Under steady physiological conditions, most primitive HSCs remain quiescent in the bone marrow (BM). They respond to different stimuli to refresh the blood system. The transition from quiescence to activation is accompanied by major changes in metabolism, a fundamental cellular process in living organisms that produces or consumes energy. Cellular metabolism is now considered to be a key regulator of HSC maintenance. Interestingly, HSCs possess a distinct metabolic profile with a preference for glycolysis rather than oxidative phosphorylation (OXPHOS) for energy production. Byproducts from the cellular metabolism can also damage DNA. To counteract such insults, mammalian cells have evolved a complex and efficient DNA damage repair (DDR) system to eliminate various DNA lesions and guard genomic stability. Given the enormous regenerative potential coupled with the lifetime persistence of HSCs, tight control of HSC genome stability is essential. The intersection of DDR and the HSC metabolism has recently emerged as an area of intense research interest, unraveling the profound connections between genomic stability and cellular energetics. In this brief review, we delve into the interplay between DDR deficiency and the metabolic reprogramming of HSCs, shedding light on the dynamic relationship that governs the fate and functionality of these remarkable stem cells. Understanding the crosstalk between DDR and the cellular metabolism will open a new avenue of research designed to target these interacting pathways for improving HSC function and treating hematologic disorders.


Subject(s)
DNA Damage , DNA Repair , Hematopoietic Stem Cells , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Humans , Animals , Genomic Instability , Energy Metabolism , Oxidative Phosphorylation
15.
Chemistry ; : e202400882, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38736029

ABSTRACT

The triboelectric material is the key factor affecting the performance of triboelectric nanogenerators (TENGs). Inorganic materials have higher heat resistance and stability than widely used organic materials. However, the weaker triboelectric property limits the application of TENGs. Modulating surface roughness by changing particle shape and size is a simple way to increase performance for TENGs. Polyoxometalates (POMs) have unrivalled structural diversity and can self-assemble to form different nanostructures. In this study, we propose [{(NH4)42[Mo72VIMo60VO372(CH3COO)30(H2O)7.ca.300H2O.ca.CH3COONH4)]}-Mo132] and [{Na8K14(VO)2[{(MoVI)(Mo5VIO21)(H2O)3]}10{(MoVI)Mo5VIO21(H2O)3(SO4)}2{VIVO(H2O)20}{VIVO}10({KSO4}5)2]·150H2O)}-Mo72V30] with blackberry structure which are cured and prepared into film by spin-coating technique, are used as triboelectric positive materials for the first time in the field of TENGs. Keplerate-type polyoxometalates can form blackberry structures with higher dispersibility and flexibility, which can be used to control surface roughness by regulating the size of particles. The discovery proves that the particle size influences the surface roughness, which adjusts the output of TENGs. According to our findings, Mo132-h-TENG generates an output voltage of 29.3 V, an output charge of 8 nC 2-3 folds higher than Mo132-TENG, and a maximum power density of 6.25 mW·m-2 at 300 MΩ. Our research provides that altering the dimensional size can be an available way to raise the output of TENGs.

16.
Phytomedicine ; 130: 155718, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38795694

ABSTRACT

BACKGROUND: Senile osteoporosis (SOP) is an age-related systemic metabolic bone disorder. Previous studies have proved that Zhuang-Gu-Fang (ZGF) modulates myokines, stimulates osteogenic differentiation, and mitigates osteoporosis. OBJECTIVE: To elucidate the mechanism by which ZGF promotes osteogenic differentiation via myoblast and myoblast exosomal microRNAs (miRNAs) and investigate its potential implications in senile osteoporosis. METHODS: Characterization of ZGF and ZGF serum using UHPLC-MS/MS. An alkaline phosphatase (ALP) activity assay and staining techniques were employed to corroborate the impacts of ZGF on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) via myoblasts. Subsequently, exosomes derived from myoblasts were isolated through ultracentrifugation. The effects of ZGF on the BMSCs' osteogenic differentiation were substantiated through ALP activity, alizarin red staining, and a quantitative real-time polymerase reaction system (qRT-PCR). Selected miRNAs were identified via high-throughput sequencing and subjected to differential expression analysis, and subsequently validated through qRT-PCR. The senescence-accelerated (SAMP6) mice were selected as the SOP models. qRT-PCR analyses were further conducted to confirm the expression levels of these selected miRNAs in the muscle and bone tissues of the SAMP6 mice, and the protein expression of osteogenesis-related transcription factors OCN and Osterix in its bone tissue was evaluated by immunofluorescence staining analysis (IF). RESULTS: ZGF may enhance the osteogenic differentiation of BMSCs through myoblasts and myoblast-derived exosomes. High-throughput sequencing, differential expression analysis, and subsequent qRT-PCR validation identified four miRNAs that stood out due to their significant differential expression: miR-5100, miR-142a-3p, miR-126a-3p, miR-450b-5p and miR-669a-5p. Moreover, the mice experiment corroborated these findings, which revealed that ZGF not only up-regulated the expression of miR-5100, miR-450b-5p and miR-126a-3p in muscle and bone tissues but also concurrently down-regulated the expression of miR-669a-5p in these tissues. IF staining analysis indicated that ZGF can significantly increase the protein expression of the osteogenic transcription factors OCN and Osterix in the bone tissue of mice with SOP. CONCLUSIONS: ZGF can promote osteogenic differentiation of osteoblasts, regulate bone metabolism, and thereby delay the process of SOP. Perhaps, its mechanism is to upregulate myoblast-derived exosomes miR-5100, miR-126a-3p, and miR-450b-5p or downregulate miR-669a-5p. This study reports for the first time that myoblast exosomes miR-669a-5p and miR-450b-5p are novel targets for the regulation of osteoblastic differentiation and the treatment of SOP.

17.
Org Lett ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810217

ABSTRACT

Here, we present a versatile, silver-catalyzed multi-auto-tandem reaction involving enamines, alkynals, and nucleophiles, utilizing the highly reactive intermediate azafulvenium. This method allows for flexible and switchable regiodivergent reactions through either intermolecular or intramolecular nucleophilic attacks, which can be controlled by adjusting the catalytic conditions. A range of site-specific functionalized or polycyclic fused pyrrole products were efficiently produced with a high level of chemocontrol.

18.
Small Methods ; : e2400454, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818744

ABSTRACT

In microbiological research, traditional methods for bacterial screening and antibiotic susceptibility testing are resource-intensive. Microfluidics offers an efficient alternative with rapid results and minimal sample consumption, but the demand for cost-effective, user-friendly platforms persists in communities and hospitals. Inspired by the Magdeburg hemispheres, the strategy adapts to local conditions, leveraging omnipresent atmospheric pressure for self-sealing of Rotation-SlipChip (RSC) equipped with a 3D circular Christmas tree-like microfluidic concentration gradient generator. This innovative approach provides an accessible and adaptable platform for microbiological research and testing in diverse settings. The RSC can avoid leakage concerns during multiple concentration gradient generation, chip-rotating, and final long-term incubation reaction (≥24 h). Furtherly, RSC subtypes adapted to different reactions can be fabricated in less than 15 min with cost less than $1, the result can be read through designated observational windows by naked-eye. Moreover, the RSC demonstrates its capability for evaluating bacterial biomarker activity, enabling the rapid assessment of ß-galactosidase concentration and enzyme activity within 30 min, and the limit of detection can be reduced by 10-fold. It also rapidly determines the minimum antibiotic inhibitory concentration and antibiotic combined medications results within 4 h. Overall, these low-cost and user-friendly RSC make them invaluable tools in determinations at previously impractical environment.

19.
Plant Dis ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812367

ABSTRACT

Hylocereus megalanthus (syn. Selenecereus megalanthus), commonly known as Yanwo fruit (bird's nest fruit), is an important tropical fruit, which is popular and widely planted due to its high nutritional and economic value in southern China. In September 2022, a serious stem and fruit canker was observed on Ecuadorian variety of Yanwo fruit plant in a 0.2 ha orchard in Guangdong (N21°19'1.24" E110°7'28.49"). Almost all plants were infected and disease incidence of fruits and stems was about 80% and 90% respectively. Symptoms on the stem and fruits were small, circular or irregular, sunken, orangish brown spots that developed into cankers (Fig 1 A, B and C). Black pycnidia were embedded under the surface of the cankers at the initial stage, subsequently they became erumpent from the surface, and the infected parts rotted. Five symptomatic stems from five plants were collected, 0.2 cm2 tissues adjacent to cankers were surface sterilized and placed on potato dextrose agar (PDA) to incubate at 25 to 28 ℃. Fungal isolates each with similar morphology grew from 100% of the tissues. Colonies covered with aerial mycelium were grayish white, and then gradually turned to grayish black. Septate hyphae were hyaline to brown and constricted into arthroconidial chains. The arthroconidia were variously shaped and colored, orbicular to rectangular, hyaline to dark brown, thick-walled, and zero- to one- septate, averaging 7.7 × 3.6 µm (n>50) (Fig 1 D, E, F and G). To identify the fungus, the internal transcribed spacer region (ITS), translation elongation factor 1-alpha (tef1), beta-tubulin (tub2), histone H3 (his3) and chitin synthase (chs) gene of isolate ACCC 35488 and ACCC 35489 (Agricultural Culture Collection of China) were amplified and sequenced with primer pairs: ITS1/ITS4 (White et al. 1990), EF1-728F/EF2-rd (Carbone & Kohn 1999; O'Donnell et al.1998), TUB2Fd/ TUB4Rd(Aveskamp et al 2009), CYLH3F/H3-1b (Crous et al. 2004) and CHS-79F/CHS-345R (Carbone & Kohn 1999) (ITS: OQ381102 and PP488350; tef1: OQ408545 and PP510454; tub2: OQ408546 and PP510455; his3: OQ408544 and PP510453; chs: OQ408543 and PP510452). Sequence Blastn results showed above 99% identical with those of Neoscytalidium dimidiatum ex-type strain CPC38666. Phylogenetic tree inferred from Maximum Likelihood analysis of the combined ITS, tub2 and tef1 sequences revealed two isolates clustered with N. dimidiatum (Fig 2). Pathogenicity was tested on healthy one-year-old cuttings and fruits of Ecuadorian variety at room temperature. Six sites were pin-pricked on each stem and fruit. Both wounded stems and fruits were inoculated with spore suspensions (106 spore/ml) and 6-mm fungal plugs respectively. Sterile water and agar were used as control. The test was repeated twice. Stems and fruits were enclosed in plastic boxes with 80% relative humidity. Symptoms described above were observed on inoculated stems and fruits at five days post inoculation (Fig 1 H and I). No symptoms developed on the controls. Neoscytaliudium dimidiatum was reisolated from the cankers with a frequency of 100% via morphological and molecular analysis. This is first report of stem and fruit canker caused by N. dimidiatum on H. megalanthus in China and this disease represents a serious risk of Yanwo fruit yield losses. This fungus is widespread occurring throughout the world causing diseases on a wide variety of plants. The finding will be helpful for its prevention and control.

20.
Sci Total Environ ; 933: 173080, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38735320

ABSTRACT

In light of the pressing need to reduce carbon emissions, the biomass power generation industry has gained significant attention and has increasingly become a crucial focus in China. However, there are still considerable gaps in the historical background, status, and prospects of biomass power generation. Herein, the historical and current status of biomass power generation in China are systematically reviewed, with a particular emphasis on supportive policies, environmental impacts, and future projections. By 2022, the newly installed capacity for biomass power generation reached 3.34 MW with a total installed capacity of 41 MW. The power produced from biomass power generation is 182.4 billion kWh in China. The total installed capacity and generated power in 2022 were 1652 and 1139 folds higher than in 2006 when the first biomass generation plant was established. However, disparities in the distribution of biomass resources and power generation were observed. Key drivers of the industry development include tax, finance, and subsidy policies. Under the implementation of the 14th Five-Year Plan for renewable energy development and the goal of carbon neutrality, biomass power generation may achieve great success through more targeted policy support and advanced technologies that reduce air pollutant emissions. If combined with Bioenergy with Carbon Capture and Storage (BECCS) technology, biomass power generation will make its contribution to carbon neutrality in China.


Subject(s)
Biomass , China , Carbon/analysis , Power Plants , Air Pollution/prevention & control , Air Pollution/statistics & numerical data , Air Pollutants/analysis , Renewable Energy
SELECTION OF CITATIONS
SEARCH DETAIL
...