Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902501

ABSTRACT

The impairment of blood-brain barrier (BBB) integrity is the pathological basis of hemorrhage transformation and vasogenic edema following thrombolysis and endovascular therapy. There is no approved drug in the clinic to reduce BBB damage after acute ischemic stroke (AIS). Glial growth factor 2 (GGF2), a recombinant version of neuregulin-1ß that can stimulates glial cell proliferation and differentiation, has been shown to alleviate free radical release from activated microglial cells. We previously found that activated microglia and proinflammatory factors could disrupt BBB after AIS. In this study we investigated the effects of GGF2 on AIS-induced BBB damage as well as the underlying mechanisms. Mouse middle cerebral artery occlusion model was established: mice received a 90-min ischemia and 22.5 h reperfusion (I/R), and were treated with GGF2 (2.5, 12.5, 50 ng/kg, i.v.) before the reperfusion. We showed that GGF2 treatment dose-dependently decreased I/R-induced BBB damage detected by Evans blue (EB) and immunoglobulin G (IgG) leakage, and tight junction protein occludin degradation. In addition, we found that GGF2 dose-dependently reversed AIS-induced upregulation of vesicular transcytosis increase, caveolin-1 (Cav-1) as well as downregulation of major facilitator superfamily domain containing 2a (Mfsd2a). Moreover, GGF2 decreased I/R-induced upregulation of PDZ and LIM domain protein 5 (Pdlim5), an adaptor protein that played an important role in BBB damage after AIS. In addition, GGF2 significantly alleviated I/R-induced reduction of YAP and TAZ, microglial cell activation and upregulation of inflammatory factors. Together, these results demonstrate that GGF2 treatment alleviates the I/R-compromised integrity of BBB by inhibiting Mfsd2a/Cav-1-mediated transcellular permeability and Pdlim5/YAP/TAZ-mediated paracellular permeability.

2.
Front Pharmacol ; 13: 914153, 2022.
Article in English | MEDLINE | ID: mdl-35865954

ABSTRACT

The recovery of spinal cord injury (SCI) is closely associated with the obstruction of oligodendrocyte progenitor cell (OPC) differentiation, which ultimately induces the inability to generate newly formed myelin. To address the concern, drug-based methods may be the most practical and feasible way, possibly applying to clinical therapies for patients with SCI. In our previous study, we found that clemastine treatment preserves myelin integrity, decreases the loss of axons, and improves functional recovery in the SCI model. Clemastine acts as an antagonist of the muscarinic acetylcholine receptor (muscarinic receptor, MR) identified from a string of anti-muscarinic drugs that can enhance oligodendrocyte differentiation and myelin wrapping. However, the effects of clemastine on OPC differentiation through MRs in SCI and the underlying mechanism remain unclear. To explore the possibility, a rat model of SCI was established. To investigate if clemastine could promote the differentiation of OPCs in SCI via MR, the expressions of OPC and mature OL were detected at 7 days post injury (dpi) or at 14 dpi. The significant effect of clemastine on encouraging OPC differentiation was revealed at 14 dpi rather than 7 dpi. Under pre-treatment with the MR agonist cevimeline, the positive role of clemastine on OPC differentiation was partially disrupted. Further studies indicated that clemastine increased the phosphorylation level of extracellular signal-regulated kinase 1/2 (p-ERK1/2) and the expressions of transcription factors, Myrf and Olig2. To determine the relationship among clemastine, ERK1/2 signaling, specified transcription factors, and OPC differentiation, the ERK1/2 signaling was disturbed by U0126. The inhibition of ERK1/2 in SCI rats treated with clemastine decreased the expressions of p-ERK 1/2, Myrf, Olig2, and mature OLs, suggesting that ERK1/2 is required for clemastine on promoting OPC differentiation and that specified transcription factors may be affected by the activity of ERK1/2. Moreover, the impact of clemastine on modulating the level of p-ERK 1/2 was restricted following cevimeline pre-injecting, which provides further evidence that the role of clemastine was mediated by MRs. Altogether, our data demonstrated that clemastine, mediated by MRs, promotes OPC differentiation under the enhancement of Myrf and Olig2 by activating ERK1/2 signaling and suggests a novel therapeutic prospect for SCI recovery.

3.
J Asian Nat Prod Res ; 23(3): 284-293, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32079415

ABSTRACT

Phenethyl glycosides having phenolic or methoxy functions at benzene rings are substances widely occurring in nature. This kind of compounds has been shown to have anti-oxidant, anti-inflammatory, and anticancer activities. However, some of them are not naturally abundant, thus the synthesis of such molecules is desirable. In this paper, natural phenethyl glycosides 3 and 4 were first totally synthesized from easily available materials with overall yields of 50.5% and 40.1%, respectively. And a new synthetic route to obtain natural phenethyl glycoside 2 in 46.2% yield was also described.


Subject(s)
Glycosides , Phenols , Anti-Inflammatory Agents , Molecular Structure
4.
FEBS J ; 274(10): 2596-602, 2007 May.
Article in English | MEDLINE | ID: mdl-17437523

ABSTRACT

The M-superfamily of conotoxins has a typical Cys framework (-CC-C-C-CC-), and is one of the eight major superfamilies found in the venom of the cone snail. Depending on the number of residues located in the last Cys loop (between Cys4 and Cys5), the M-superfamily family can be divided into four branches, namely M-1, -2, -3 and -4. Recently, two M-1 branch conotoxins (mr3e and tx3a) have been reported to possess a new disulfide bond arrangement between Cys1 and Cys5, Cys2 and Cys4, and Cys3 and Cys6, which is different from those seen in the M-2 and M-4 branches. Here we report the 3D structure of mr3e determined by 2D (1)H NMR in aqueous solution. Twenty converged structures of this peptide were obtained on the basis of 190 distance constraints obtained from NOE connectivities, as well as six varphi dihedral angle, three hydrogen bond, and three disulfide bond constraints. The rmsd values about the averaged coordinates of the backbone atoms were 0.43 +/- 0.19 A. Although mr3e has the same Cys arrangement as M-2 and M-4 conotoxins, it adopts a distinctive backbone conformation with the overall molecule resembling a 'flying bird'. Thus, different disulfide linkages may be employed by conotoxins with the same Cys framework to result in a more diversified backbone scaffold.


Subject(s)
Conotoxins/chemistry , Disulfides/chemistry , Amino Acid Sequence , Fourier Analysis , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular
SELECTION OF CITATIONS
SEARCH DETAIL
...