Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 13(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38785782

ABSTRACT

Vibrio parahaemolyticus is one of the main causative agents leading to acute hepatopancreatic necrosis disease, the severe bacterial disease that occurs during shrimp aquaculture. Hemocytes play important roles during Vibrio infection. Previously, we found that there were few differentially expressed genes (DEGs) between hemocytes from V. parahaemolyticus-resistant and -susceptible shrimp before infection. We considered that there should be different immune responses between them after a pathogen infection. Here, the transcriptome data of hemocytes from V. parahaemolyticus-resistant and -susceptible shrimp before and after a pathogen infection were compared. The results showed that there were 157 DEGs responsive to infection in V. parahaemolyticus-resistant shrimp, while 33 DEGs in V. parahaemolyticus-susceptible shrimp. DEGs in V. parahaemolyticus-resistant shrimp were mainly related to immune and glycolytic processes, while those in V. parahaemolyticus-susceptible shrimp were mainly related to metabolism, with only two DEGs in common. A further analysis of genes involved in glucose metabolism revealed that GLUT2, HK, FBP, and PCK1 were lowly expressed while PC were highly expressed in hemocytes of the V. parahaemolyticus-resistant shrimp, indicating that glucose metabolism in shrimp hemocytes was related to a V. parahaemolyticus infection. After the knockdown of PC, the expression of genes in Toll and IMD signaling pathways were down-regulated, indicating that glucose metabolism might function through regulating host immunity during V. parahaemolyticus infection. The results suggest that the immune responses between V. parahaemolyticus-resistant and -susceptible shrimp were apparently different, which probably contribute to their different V. parahaemolyticus resistance abilities.

2.
Environ Res ; 246: 118148, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38191040

ABSTRACT

Interpreting the biogeographic distribution and underlying mechanisms of functional traits not only contributes to revealing the spatiotemporal dynamics of species biodiversity but also helps to maintain ecological stability during environmental variations. However, little is known about the functional profiles of diatom communities over large river systems. Herein, we provided the first blueprints about the spatiotemporal distributions and driving forces of functional traits for both planktonic and sedimentary diatoms over the 6030 km continuum of the Yangtze River, with the help of the high-throughput sequencing and functional identification. By investigating the 28 functional traits affiliated into five categories, we found that planktonic diatom functions showed clearer landform-heterogeneity patterns (ANOSIM R = 0.336) than sedimentary functions (ANOSIM R = 0.172) along the river, represented by life-forms and ecological-guilds prominent in water-plateau as well as cell-sizes and life-forms particularly in sediment-plateau. Planktonic diatom functions also displayed higher richness and network complexity in plateau (richness: 58.70 ± 9.30, network edges: 65) than in non-plateau regions (23.82 ± 13.16, 16), promoting the stability and robustness of diatom functions against the high-radiation and low-temperature plateau environment. Environmental selection (mainly exerted by PAR, UV, and Tw) played crucial roles in determining the functional variations of planktonic diatoms (explaining 80.5%) rather than sedimentary diatoms (14.5%) between plateau and non-plateau regions. Meanwhile, planktonic diatom traits within life-forms were identified to be well responsive to the ecological environment quality (r = 0.56-0.60, P < 0.001) in the Yangtze. This study provided comprehensive insights into the multifunctionality of diatoms and their responses to environmental disturbance and environment quality, which helps to develop effective strategies for maintaining ecological stability in changing river environments.


Subject(s)
Diatoms , Plankton , Ecosystem , Environmental Monitoring , Biodiversity , Rivers
3.
Water Res ; 247: 120821, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37952398

ABSTRACT

Reclaimed water has been widely utilized for water resource replenishment, yet little is known regarding its impacts on various microorganisms in the receiving water. To address this knowledge gap, we systematically investigated the responses of bacteria and algae to the recharge of reclaimed water by using the high-throughput sequencing technology in the urban Chaobai River. After the inputs of reclaimed water, lower contents of NO2--N, NH4+-N, and TP were observed in the downstream section compared to that of upstream without reclaimed water, indicating that reclaimed water could improve the water quality of the receiving water. Correspondingly, both bacterial and algal communities showed the decreased network complexity in the downstream section, but many common freshwater bacteria and typical bloom-forming algae were dominant in the downstream, potentially suggesting that algae were more sensitive to the local environmental conditions. More importantly, although nitrogen and phosphorus served as the paramount factors in shaping both bacterial and algal communities, environmental selection contributed more to algal rather than bacterial community, and simultaneously algal variations could further affect bacterial dynamics in the urban river. Overall, these findings revealed distinct characteristics of bacteria and algae in responding to the reclaimed water recharge, highlighting the superiority of algae in indicating environmental changes, especially in monitoring and regulating the replenishment of reclaimed water in urban rivers.


Subject(s)
Bacteria , Rivers , Water Quality , Fresh Water , China , Environmental Monitoring
4.
Environ Sci Technol ; 57(44): 16953-16963, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37886803

ABSTRACT

Photogranules are dense algal-bacterial aggregates used in aeration-free and carbon-negative wastewater treatment, wherein filamentous cyanobacteria (FC) are essential components. However, little is known about the functional role of symbiotic bacteria in photogranulation. Herein, we combined cyanobacterial isolation, reactor operation, and multiomics analysis to investigate the cyanobacterial-bacterial interaction during photogranulation. The addition of FC to the inoculated sludge achieved a 1.4-fold higher granule size than the control, and the aggregation capacity of FC-dominant photogranules was closely related to the extracellular polysaccharide (PS) concentration (R = 0.86). Importantly, we found that cross-feeding between FC and symbiotic bacteria for macromolecular PS synthesis is at the heart of photogranulation and substantially enhanced the granular stability. Chloroflexi-affiliated bacteria intertwined with FC throughout the photogranules and promoted PS biosynthesis using the partial nucleotide sugars produced by FC. Proteobacteria-affiliated bacteria were spatially close to FC, and highly expressed genes for vitamin B1 and B12 synthesis, contributing the necessary cofactors to promote FC proliferation. In addition, Bacteroidetes-affiliated bacteria degraded FC-derived carbohydrates and influenced granules development. Our metabolic characterization identified the functional role of symbiotic bacteria of FC during photogranulation and shed light on the critical cyanobacterial-bacterial interactions in photogranules from the viewpoint of cross-feeding.


Subject(s)
Chloroflexi , Cyanobacteria , Wastewater , Bioreactors , Sewage , Waste Disposal, Fluid
5.
Biology (Basel) ; 12(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37508407

ABSTRACT

Vibrio parahaemolyticus carrying plasmid encoding toxins PirA and PirB is one of the causative agents leading to the severe disease of AHPND in shrimp aquaculture. However, there is a lack of deep understanding of the host-resistant characteristics against V. parahaemolyticus infection. Here, we established a method to obtain hemocytes from shrimp with different V. parahaemolyticus-resistant abilities and performed comparative transcriptome analysis on the expression profiles at the background level of hemocytes from shrimp in two independent populations. Principal component analysis and sample clustering results showed that samples from the same population had a closer relationship than that from shrimp with similar disease-resistant abilities. DEGs analysis revealed that the number of DEGs between two populations was much more than that between V. parahaemolyticus-resistant and susceptible shrimp. A total of 31 DEGs and 5 DEGs were identified from the comparison between V. parahaemolyticus-resistant and susceptible shrimp from populations 1 and 2, respectively. DEGs from population 1 were mainly cytoskeleton-related genes, metabolic related genes, and immune related genes. Although there was no DEGs overlap between two comparisons, DEGs from population 2 also included genes related to cytoskeleton and metabolism. The data suggest that these biological processes play important roles in disease resistance, and they could be focused by comprehensive analysis of multiple omics data. A new strategy for screening key biological processes and genes related to disease resistance was proposed based on the present study.

6.
Water Res ; 241: 120144, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37300965

ABSTRACT

Photogranules composed of algae, nitrifiers, and anammox bacteria are promising for nitrogen removal from wastewater with reduced aeration and carbon emissions. However, it is difficult to be achieved as the potential inhibition of anammox bacteria by light. In this study, a syntrophic algal-partial nitrification/anammox granular sludge process was developed, with a nitrogen removal rate of 294.5 mg N/(L·d). We found the symbiosis in the community promoted the adaptation of anammox bacteria under light, and cross-feeding played an important role. Microalgae in the outer layers of photogranules sheltered most of the light and supplied cofactors and amino acids to promote nitrogen removal. In particular, Myxococcota MYX1 degraded the extracellular proteins produced by microalgae, providing amino acids to the entire bacterial community, which helped anammox bacteria save metabolic energy and adapt to light. Notably, the anammox bacteria Candidatus Brocadia exhibited unique light-sensing potential and adaptations to light irradiation compared with Candidatus Jettenia, including diverse DNA repair, scavenging of reactive oxygen species, cell movement. The phytochrome-like proteins encoded by Candidatus Brocadia further facilitated their spatial positioning and niche partitioning in photogranules. This study provides insights into the response of anammox bacteria in the algae-bacteria symbiosis system and suggests its potential application for carbon-negative nitrogen removal.


Subject(s)
Anaerobic Ammonia Oxidation , Bioreactors , Bioreactors/microbiology , Oxidation-Reduction , Wastewater , Sewage/microbiology , Nitrification , Bacteria/metabolism , Nitrogen/metabolism , Denitrification
7.
J Hazard Mater ; 455: 131567, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37167868

ABSTRACT

Metal(loid) contaminations pose considerable threats to ecological security and public health, yet little is known about the dynamics of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) under different metal(loid) contamination levels. Here, we provided a systematic investigation of MRGs and ARGs in three zones (Zones I, II, and III) with different metal(loid) contamination levels across an abandoned sewage reservoir. More diverse MRGs and ARGs were detected from the high-contaminated Zone I and the moderate-contaminated Zone II, while the abundant MGEs (mobile genetic elements) potentially enhanced the horizontal gene transfer potential and the resistome diversity in Zone I. Particularly, resistome hosts represented by Thiobacillus, Ramlibacter, and Dyella were prevalent in Zone II, promoting the vertical gene transfer of MRGs and ARGs. The highest health risk of ARGs was predicted for Zone I (about 7.58% and 0.48% of ARGs classified into Rank I and Rank II, respectively), followed by Zone II (2.11% and 0%) and Zone III (0% and 0%). However, the ARGs co-occurring with MRGs might exhibit low proportions and low health risks (all were Rank IV) in the three zones. Overall, these findings uncovered the dynamic responses of resistomes and their hosts to different metal(loid) contamination levels, contributing to formulating accurate management and bioremediation countermeasures for various metal(loid) contaminated environments.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Metals , Drug Resistance, Microbial/genetics , Sewage
8.
Sci Total Environ ; 877: 162931, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36934934

ABSTRACT

Fungi possess prominent tolerance and detoxification capacities in highly metal(loid)-polluted systems, yet little is known about their responding behaviors under different contamination conditions. Here, we systematically investigated the structure and function profiles of fungal communities in an abandoned reservoir mainly contaminated by multiple metal(loid)s such as Al, Be, Cd, Co, Cr, and Cu. This abandoned reservoir consisted of three distinct zones, i.e., Zone I with the shortest deprecation time and the highest metal(loid) contamination; Zone II with the medium deprecation time and medium metal(loid) contamination; and Zone III with the longest abandonment time and the lowest metal(loid)contamination. The lowest pH and the highest contents of OM, TN, and TP were also observed for the high-contamination Zone I, followed by the moderate-contamination Zone II and the low-contamination Zone III. Fungal biodiversity was found to be robust and dominated by many endurable genera in Zone I, and notable cooperative relationships among fungal species facilitated their viability and prosperity under severe metal(loid) contaminations. Differently, the lowest biodiversity and fragile co-occurrence network were identified in Zone II. As metal(loid) contaminations reduced from Zone I to Zone III, dominant fungal functions gradually changed from undefined saprotroph guild to parasites or pathogens of plant-animal (i.e. animal pathogen, endophyte, and plant pathogen). Moreover, metal(loid)s combined with physicochemical properties jointly mediated the fungal taxonomic and functional responses to different metal(loid) contamination levels. Overall, this study not only broadens the understanding of taxonomic and functional repertoires of fungal communities under different metal(loid) contaminated conditions, but also highlights the crucial contributions of specific fungi to bioremediation and management in varying metal(loid)-polluted environments.


Subject(s)
Metals, Heavy , Soil Pollutants , Metals/analysis , Plants , Soil Pollutants/analysis , Metals, Heavy/analysis , Soil/chemistry
9.
Chinese Journal of School Health ; (12): 200-204, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-964411

ABSTRACT

Objective@#To explore the prevalence and relevant factors of physical and emotional abuse by parents among children with autism spectrum disorder (ASD), so as to provide basis for intervention program of children abuse.@*Methods@#A total of 221 ASD children from 3 special education institutions in Tangshan were investigated from March to October in 2021, 395 non ASD children from two kindergartens in urban and rural areas were selected by convenient sampling. Parents of these children were invited for online and on site questionnaire survey. The self designed violence questionnaire, Childhood Autism Rating Scale and Patient Health Questionnaire-9 were used to assess violence, severity of autism, depression of parents. Chi square test, Fisher s exact probability method and Logistic regression were used to analyze the influencing factors of violence.@*Results@#About 81.9% of children with ASD and 72.9% of non ASD children experienced violence( P <0.05). The reported rates of physical and emotional violence in ASD children were 74.2% and 73.8% respectively, which in non ASD children were 58.7% and 65.8% respectively. There were significant differences in the 3 types of violence rate between the two groups ( P <0.05). Multivariate Logistic regression analysis showed that boys ( OR =1.70, 95% CI =1.12-2.60), annual per capita income <10 000 yuan( OR =2.43, 95% CI =1.45- 4.08 ), and parental depression ( OR mild =11.01, 95% CI =5.38-22.49; OR moderate =69.97,95% CI =24.25-201.93) were the risk factors for child violence exposure; ASD disease ( OR=1.96,95%CI =1.32-2.92), older age ( OR=1.19, 95%CI =1.01-1.41) and parental depression( OR mild =7.83, 95% CI =3.67-16.74; OR moderate =14.37,95% CI =6.17-33.46) were risk factors for physical violence; boys ( OR =1.62, 95% CI =1.11-2.36), mothers who work in manual labor ( OR=1.68, 95%CI =1.09-2.59) and parental depression ( OR mild =7.69, 95% CI =3.74-15.81; OR moderate =25.37, 95% CI =10.80-59.63) were risk factors for emotional violence( P < 0.05 ).@*Conclusion@#The reported rate of parental violence against children with ASD is high. Mental health promotion and social support for families with ASD should be strengthened.

10.
Front Psychiatry ; 12: 715481, 2021.
Article in English | MEDLINE | ID: mdl-34675825

ABSTRACT

Background: This study aimed to explore the main effects of environmental risk factors as well as their interaction effects with miRNA on the risk of autism spectrum disorder (ASD). Methods: One hundred fifty-nine ASD children (ASD group) and 159 healthy children (control group), aged 2-6 years, were included in this study. ASD diagnoses were based on DSM-5 criteria. The extensive medical and demographic characterization of the two groups were recorded. MicroRNAs (miRNAs) in serum were detected by qRT-PCR. Results: Compared with the control group, the ASD group had significantly higher rates of maternal stress during pregnancy (p < 0.001), maternal drinking during pregnancy (p = 0.006), threatened abortion (p = 0.011), pregnancy-induced hypertension (p = 0.032), gestational diabetes (p = 0.039), maternal anemia during pregnancy (p < 0.001), umbilical cord knot (p < 0.001), neonatal jaundice (p < 0.001), family psychiatric history (p = 0.001), and much lower birth weight (p = 0.012). Furthermore, the ASD group had much lower expression levels of hsa-miR-181b-5p (p < 0.001) and hsa-miR-320a (p < 0.001) and significantly higher levels of hsa-miR-19b-3p (p < 0.001). The interactions of hsa-miR-320a and maternal stress during pregnancy (OR = 39.42, p < 0.001), hsa-miR-19b-3p and neonatal jaundice (OR = 2.44, p < 0.001), and hsa-miR-181b-5p and family psychiatric history (OR = 8.65, p = 0.001) could increase ASD risk. Conclusions: The dysregulation of hsa-miR-181b-5p, hsa-miR-320a, and hsa-miR-19b-3p could interact with environmental factors, such as maternal stress during pregnancy, neonatal jaundice, and family psychiatric history, to impact the risk of ASD.

SELECTION OF CITATIONS
SEARCH DETAIL
...