Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.064
Filter
1.
Front Immunol ; 15: 1342350, 2024.
Article in English | MEDLINE | ID: mdl-38720901

ABSTRACT

Dyslipidemia is the most prevalent independent risk factor for patients with chronic kidney disease (CKD). Lipid-induced NLRP3 inflammasome activation in kidney-resident cells exacerbates renal injury by causing sterile inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that modulates the cellular redox balance; however, the exact role of Nrf2 signaling and its regulation of the NLRP3 inflammasome in hyperlipidemia-induced kidney injury are poorly understood. In this study, we demonstrated that activation of the mtROS-NLRP3 inflammasome pathway is a critical contributor to renal tubular epithelial cell (RTEC) apoptosis under hyperlipidemia. In addition, the Nrf2/ARE signaling pathway is activated in renal tubular epithelial cells under hyperlipidemia conditions both in vivo and in vitro, and Nrf2 silencing accelerated palmitic acid (PA)-induced mtROS production, mitochondrial injury, and NLRP3 inflammasome activation. However, the activation of Nrf2 with tBHQ ameliorated mtROS production, mitochondrial injury, NLRP3 inflammasome activation, and cell apoptosis in PA-induced HK-2 cells and in the kidneys of HFD-induced obese rats. Furthermore, mechanistic studies showed that the potential mechanism of Nrf2-induced NLRP3 inflammasome inhibition involved reducing mtROS generation. Taken together, our results demonstrate that the Nrf2/ARE signaling pathway attenuates hyperlipidemia-induced renal injury through its antioxidative and anti-inflammatory effects through the downregulation of mtROS-mediated NLRP3 inflammasome activation.


Subject(s)
Epithelial Cells , Hyperlipidemias , Inflammasomes , Kidney Tubules , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , NF-E2-Related Factor 2/metabolism , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Hyperlipidemias/metabolism , Hyperlipidemias/complications , Hyperlipidemias/immunology , Epithelial Cells/metabolism , Rats , Humans , Kidney Tubules/pathology , Kidney Tubules/metabolism , Male , Cell Line , Apoptosis , Antioxidant Response Elements , Mitochondria/metabolism , Disease Models, Animal , Rats, Sprague-Dawley
2.
Nat Chem Biol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720107

ABSTRACT

Whether stem-cell-like cancer cells avert ferroptosis to mediate therapy resistance remains unclear. In this study, using a soft fibrin gel culture system, we found that tumor-repopulating cells (TRCs) with stem-cell-like cancer cell characteristics resist chemotherapy and radiotherapy by decreasing ferroptosis sensitivity. Mechanistically, through quantitative mass spectrometry and lipidomic analysis, we determined that mitochondria metabolic kinase PCK2 phosphorylates and activates ACSL4 to drive ferroptosis-associated phospholipid remodeling. TRCs downregulate the PCK2 expression to confer themselves on a structural ferroptosis-resistant state. Notably, in addition to confirming the role of PCK2-pACSL4(T679) in multiple preclinical models, we discovered that higher PCK2 and pACSL4(T679) levels are correlated with better response to chemotherapy and radiotherapy as well as lower distant metastasis in nasopharyngeal carcinoma cohorts.

3.
Front Nutr ; 11: 1351797, 2024.
Article in English | MEDLINE | ID: mdl-38751736

ABSTRACT

Background: AAA is a fatal condition that commonly occurs during vascular surgery. Nutritional status exerts a significant influence on the prognosis of various pathological conditions Scores from the CONUT screening tool have been shown to predict outcomes of certain malignancies and chronic diseases. However, the ramifications of nutritional status on AAA patients undergoing EVAR have not been elucidated in prior studies. In this study, we aimed to elucidate the correlation between CONUT scores and postoperative prognostic outcomes in patients with AAA undergoing EVAR. Methods: This was a retrospective review of 177 AAA patients treated with EVAR from June 2018 to November 2019 in a single center. Patient characteristics, CONUT scores, and postoperative status were collected. These patients were stratified into groups A and B according to CONUT scores. Subsequently, a comparative analysis of the baseline characteristics between the two cohorts was conducted. Cox proportional hazards and logistic regression analyses were employed to identify the autonomous predictors of mid-term mortality and complications, respectively. Results: Compared with group A, patients in group B had higher midterm mortality (p < 0.001). Univariate analysis showed that CONUT scores; respiratory diseases; stent types; preoperative Hb, CRP, PT, and Fb levels were risk factors for death. Multivariate analysis confirmed that CONUT score [HR, 1.276; 95% CI, 1.029-1.584; p = 0.027] was an independent risk factor for mortality. Logistic regression analysis showed that prior arterial disease, smoking, and D-dimer levels were risk factors, although multivariate analysis showed smoking (OR, 3.492; 95% CI, 1.426-8.553; p = 0.006) was an independent risk factor. Kaplan-Meier curves showed that patients in group B had shorter mid-term survival than those in group A (log-rank p < 0.001). Conclusion: Malnutrition was strongly associated with mid-term mortality in patients with infrarenal AAA treated with EVAR.

4.
Am J Otolaryngol ; 45(5): 104358, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38754262

ABSTRACT

OBJECTIVE: This case series study investigated the outcomes of an innovative approach, ansa cervicalis nerve (ACN)-to-recurrent laryngeal nerve (RLN) low-tension anastomosis. METHODS: Patients who received laryngeal nerve anastomosis between May 2015 and September 2021 at the facility were enrolled. The inclusion criteria were patients with RLN dissection and anastomosis immediately during thyroid surgery. Exclusion criteria were cases with anastomosis other than cervical loop-RLN anastomosis or pronunciation recovery time > 6 months. Patients admitted before January 2020 were assigned to group A which underwent the conventional tension-free anastomosis, and patients admitted after January 2020 were group B and underwent the innovative low-tension anastomosis (Dong's method). RESULTS: A total of 13 patients were included, 11 patients received unilateral surgery, and 2 underwent bilateral surgery. For patients who underwent unilateral anastomosis, group B had a significantly higher percentage of normal pronunciation via GRBAS scale (83.3 % vs. 0 %, p = 0.015) and voice handicap index (66.7 % vs. 0 %, p = 0.002), and shorter recovery time in pronunciation (median: 1-day vs. 4 months, p = 0.001) than those in group A after surgery. CONCLUSIONS: ACNs-to-RLN low-tension anastomosis with a laryngeal segment ≤1 cm (Dong's method) significantly improves postoperative pronunciation and recovery time. The results provide clinicians with a new strategy for ACN -to-RLN anastomosis during thyroid surgery.

5.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2281-2289, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812128

ABSTRACT

Liver fibrosis is a key pathological stage in the progression of chronic liver disease. If the disease is mistreated, it can further deteriorate into liver failure, which seriously affects the quality of life of patients and brings heavy medical costs. Hepatic stellate cell(HSC) activation triggers extracellular matrix(ECM) deposition, which plays an important driving role in liver fibrosis, and ferroptosis is an effective strategy to clear or reverse the activation of HSCs into a deactivated phenotype. Therefore, inhibiting the activation and proliferation of HSCs by regulating ferroptosis is the key to the treatment of this disease, so as to derive the prospect of inducing ferroptosis of HSCs(including RNA-binding proteins, non-coding RNA, chemicals, and active components of traditional Chinese medicine) to intervene in liver fibrosis. On this basis, this paper started from the activation of HSCs to induce ECM deposition and focused on summarizing the mechanism of inducing HSC ferroptosis in delaying the progression of liver fibrosis, so as to continuously enrich the clinical practice of liver fibrosis and provide a reference for subsequent basic research.


Subject(s)
Ferroptosis , Hepatic Stellate Cells , Liver Cirrhosis , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Humans , Ferroptosis/drug effects , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/prevention & control , Animals , Extracellular Matrix/metabolism
6.
Cell Mol Biol Lett ; 29(1): 81, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816685

ABSTRACT

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Studies have indicated that immune dysfunction plays a central role in the pathogenesis of sepsis. Dendritic cells (DCs) play a crucial role in the emergence of immune dysfunction in sepsis. The major manifestations of DCs in the septic state are abnormal functions and depletion in numbers, which are linked to higher mortality and vulnerability to secondary infections in sepsis. Apoptosis is the most widely studied pathway of number reduction in DCs. In the past few years, there has been a surge in studies focusing on regulated cell death (RCD). This emerging field encompasses various forms of cell death, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death (ADCD). Regulation of DC's RCD can serve as a possible therapeutic focus for the treatment of sepsis. Throughout time, numerous tactics have been devised and effectively implemented to improve abnormal immune response during sepsis progression, including modifying the functions of DCs and inhibiting DC cell death. In this review, we provide an overview of the functional impairment and RCD of DCs in septic states. Also, we highlight recent advances in targeting DCs to regulate host immune response following septic challenge.


Subject(s)
Dendritic Cells , Sepsis , Dendritic Cells/immunology , Sepsis/immunology , Sepsis/pathology , Humans , Animals , Regulated Cell Death , Autophagy , Apoptosis , Pyroptosis
7.
Ann Med ; 56(1): 2357224, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38779715

ABSTRACT

BACKGROUND: Abdominal aortic aneurysm (AAA) is highly lethal upon onset of acute aortic diseases (AAD) or rupture. Dyslipidaemia and hyperuricaemia are important risk factors for the development of AAA and AAD as well as aortic disease-related death. The aim of this study was to explore whether uric acid (UA) to high-density lipoprotein cholesterol (HDL-C) ratio (UHR) can be used as an independent predictor of the presence of AAA or AAD. METHODS: Three hundred subjects, including 100 AAA patients (AAA group), 100 AAD patients (AAD group) and 100 controls (CON group), were recruited in this study. UHR and other serum samples were obtained upon the patients' admission before any medical treatment. The optimal cut-off points of UHR were determined using receiver operating characteristic (ROC) curve analysis. RESULTS: The UHR in AAA group was significantly higher than that in CON group, but there was no significant difference between AAD group and CON group. The optimal cut-off point of UHR for AAA was 7.78 (sensitivity 84.7%, specificity 62.4%, and AUC 0.811; p < 0.001), and UHR (OR: 1.122, 95%CI: 1.064-1.184; p < 0.001) was found to be an independent factor for predicting AAA after adjusting for traditional AAA risk factor. CONCLUSION: UHR can be widely used in clinical practice as an auxiliary tool for screening AAA. The optimal cut-off point for UHR to AAA was determined for the first time in Chinese subjects.


Subject(s)
Aortic Aneurysm, Abdominal , Cholesterol, HDL , Uric Acid , Humans , Aortic Aneurysm, Abdominal/blood , Aortic Aneurysm, Abdominal/diagnosis , Aortic Aneurysm, Abdominal/epidemiology , Uric Acid/blood , Male , Female , Cholesterol, HDL/blood , Aged , Middle Aged , ROC Curve , Risk Factors , Case-Control Studies , Biomarkers/blood , Predictive Value of Tests , Hyperuricemia/blood , Hyperuricemia/diagnosis , Hyperuricemia/complications
8.
Cell Death Discov ; 10(1): 167, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589400

ABSTRACT

The neurotoxic α-synuclein (α-syn) oligomers play an important role in the occurrence and development of Parkinson's disease (PD), but the factors affecting α-syn generation and neurotoxicity remain unclear. We here first found that thrombomodulin (TM) significantly decreased in the plasma of PD patients and brains of A53T α-syn mice, and the increased TM in primary neurons reduced α-syn generation by inhibiting transcription factor p-c-jun production through Erk1/2 signaling pathway. Moreover, TM decreased α-syn neurotoxicity by reducing the levels of oxidative stress and inhibiting PAR1-p53-Bax signaling pathway. In contrast, TM downregulation increased the expression and neurotoxicity of α-syn in primary neurons. When TM plasmids were specifically delivered to neurons in the brains of A53T α-syn mice by adeno-associated virus (AAV), TM significantly reduced α-syn expression and deposition, and ameliorated the neuronal apoptosis, oxidative stress, gliosis and motor deficits in the mouse models, whereas TM knockdown exacerbated these neuropathology and motor dysfunction. Our present findings demonstrate that TM plays a neuroprotective role in PD pathology and symptoms, and it could be a novel therapeutic target in efforts to combat PD. Schematic representation of signaling pathways of TM involved in the expression and neurotoxicity of α-syn. A TM decreased RAGE, and resulting in the lowered production of p-Erk1/2 and p-c-Jun, and finally reduce α-syn generation. α-syn oligomers which formed from monomers increase the expression of p-p38, p53, C-caspase9, C-caspase3 and Bax, decrease the level of Bcl-2, cause mitochondrial damage and lead to oxidative stress, thus inducing neuronal apoptosis. TM can reduce intracellular oxidative stress and inhibit p53-Bax signaling by activating APC and PAR-1. B The binding of α-syn oligomers to TLR4 may induce the expression of IL-1ß, which is subsequently secreted into the extracellular space. This secreted IL-1ß then binds to its receptor, prompting p65 to translocate from the cytoplasm into the nucleus. This translocation downregulates the expression of KLF2, ultimately leading to the suppression of TM expression. By Figdraw.

9.
World J Pediatr ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613734

ABSTRACT

BACKGROUND: Vasovagal syncope (VVS) is the most common type of orthostatic intolerance in children. We investigated whether platelet-related factors related to treatment efficacy in children suffering from VVS treated with metoprolol. METHODS: Metoprolol-treated VVS patients were recruited. The median duration of therapy was three months. Patients were followed and divided into two groups, treament-effective group and treatment-ineffective group. Logistic and least absolute shrinkage selection operator regressions were used to examine treatment outcome variables. Receiver-operating characteristic (ROC) curves, precision-recall (PR) curves, calibration plots, and decision curve analyses were used to evaluate the nomogram model. RESULTS: Among the 72 patients who complete the follow-up, treatment-effective group and treatment-ineffective group included 42 (58.3%) and 30 (41.7%) cases, respectively. The patients in the treatment-effective group exhibited higher mean platelet volume (MPV) [(11.0 ± 1.0) fl vs. (9.8 ± 1.0) fl, P < 0.01] and platelet distribution width [12.7% (12.3%, 14.3%) vs. 11.3% (10.2%, 12.2%), P < 0.01] than those in the treatment-ineffective group. The sex ratio was significantly different (P = 0.046). A fit model comprising age [odds ratio (OR) = 0.766, 95% confidence interval (CI) = 0.594-0.987] and MPV (OR = 5.613, 95% CI = 2.297-13.711) might predict therapeutic efficacy. The area under the curve of the ROC and PR curves was computed to be 0.85 and 0.9, respectively. The P value of the Hosmer-Lemeshow test was 0.27. The decision curve analysis confirmed that managing children with VVS based on the predictive model led to a net advantage ranging from 0.01 to 0.58. The nomogram is convenient for clinical applications. CONCLUSION: A novel nomogram based on age and MPV can predict the therapeutic benefits of metoprolol in children with VVS.

10.
Article in English | MEDLINE | ID: mdl-38573002

ABSTRACT

Aims: Erythropoiesis is controlled by several factors, including oxygen level under different circumstances. However, the role of hypoxia in erythroid differentiation and the underlying mechanisms are poorly understood. We studied the effect and mechanism of hypoxia on erythroid differentiation of K562 cells and observed the effect of hypoxia on early erythropoiesis of zebrafish. Results: Compared with normal oxygen culture, both hemin-induced erythroid differentiation of K562 cells and the early erythropoiesis of zebrafish were inhibited under hypoxic treatment conditions. Hypoxia-inducible factor 1 alpha (HIF1α) plays a major role in the response to hypoxia. Here, we obtained a stable HIF1α knockout K562 cell line using the CRISPR-Cas9 technology and further demonstrated that HIF1α knockout promoted hemin-induced erythroid differentiation of K562 cells under hypoxia. We demonstrated an HIF1-mediated induction of the nuclear factor interleukin-3 (NFIL3) regulated in K562 cells under hypoxia. Interestingly, a gradual decrease in NFIL3 expression was detected during erythroid differentiation of erythropoietin-induced CD34+ hematopoietic stem/progenitor cells (HSPCs) and hemin-induced K562 cells. Notably, erythroid differentiation was inhibited by enforced expression of NFIL3 under normoxia and was promoted by the knockdown of NFIL3 under hypoxia in hemin-treated K562 cells. In addition, a target of NFIL3, pim-1 proto-oncogene, serine/threonine kinase (PIM1), was obtained by RNA microarray after NFIL3 knockdown. PIM1 can rescue the inhibitory effect of NFIL3 on hemin-induced erythroid differentiation of K562 cells. Innovation and Conclusion: Our findings demonstrate that the HIF1α-NFIL3-PIM1 signaling axis plays an important role in erythroid differentiation under hypoxia. These results will provide useful clues for preventing the damage of acute hypoxia to erythropoiesis.

11.
Acta Neuropathol Commun ; 12(1): 66, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654316

ABSTRACT

The elderly frequently present impaired blood-brain barrier which is closely associated with various neurodegenerative diseases. However, how the albumin, the most abundant protein in the plasma, leaking through the disrupted BBB, contributes to the neuropathology remains poorly understood. We here demonstrated that mouse serum albumin-activated microglia induced astrocytes to A1 phenotype to remarkably increase levels of Elovl1, an astrocytic synthase for very long-chain saturated fatty acids, significantly promoting VLSFAs secretion and causing neuronal lippoapoptosis through endoplasmic reticulum stress response pathway. Moreover, MSA-activated microglia triggered remarkable tau phosphorylation at multiple sites through NLRP3 inflammasome pathway. Intracerebroventricular injection of MSA into the brains of C57BL/6J mice to a similar concentration as in patient brains induced neuronal apoptosis, neuroinflammation, increased tau phosphorylation, and decreased the spatial learning and memory abilities, while Elovl1 knockdown significantly prevented the deleterious effect of MSA. Overall, our study here revealed that MSA induced tau phosphorylation and neuron apoptosis based on MSA-activated microglia and astrocytes, respectively, showing the critical roles of MSA in initiating the occurrence of tauopathies and cognitive decline, and providing potential therapeutic targets for MSA-induced neuropathology in multiple neurodegenerative disorders.


Subject(s)
Apoptosis , Mice, Inbred C57BL , Neurons , Serum Albumin , Tauopathies , Animals , Humans , Male , Mice , Apoptosis/drug effects , Apoptosis/physiology , Astrocytes/metabolism , Astrocytes/pathology , Astrocytes/drug effects , Fatty Acid Elongases/metabolism , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Neurons/metabolism , Neurons/pathology , Neurons/drug effects , Serum Albumin/metabolism , Serum Albumin/pharmacology , tau Proteins/metabolism , Tauopathies/pathology , Tauopathies/metabolism
12.
Int J Biol Macromol ; 267(Pt 1): 131385, 2024 May.
Article in English | MEDLINE | ID: mdl-38582477

ABSTRACT

In this study, we extracted the polysaccharides from C. militaris fruiting bodies (CFIPs), mycelial intracellular polysaccharides (CMIPs), and fermentation broth extracellular polysaccharides (CFEPs) to investigate their physicochemical properties, antioxidant capacities, and effects on oxazolone-induced zebrafish ulcerative colitis (UC). Our results revealed differences in monosaccharide composition and surface structure among CFIPs, CMIPs, and CFEPs. The molar ratios of glucose to mannose in CFIPs, glucose to xylose in CMIPs, and xylose to glucose in CFEPs were 7.57: 1.6, 7.26: 1.81, and 5.44: 2.98 respectively. Moreover, CFEPs exhibited significantly (p < 0.05) higher chemical antioxidant capacity compared to CMIPs and CFIPs. Surprisingly, CFEP treatment didn't show a significant effect in protecting against H2O2-induced oxidative damage in RAW 264.7 cells. After 3 d of treatment, the levels of ROS, MDA, and MPO in the CFIPs group exhibited a significant (p < 0.05) reduction by 37.82 %, 68.15 %, and 22.77 % respectively. Additionally, the ACP and AKP increased by 60.33 % and 96.99 %. Additionally, C. militaris polysaccharides (CMPs) were found to effectively improve UC by activating the MyD88/NF-κB signaling pathway in vivo. These findings confirm the distinct physicochemical properties of these three types of CMP and their potential for development into antioxidant-rich anti-inflammatory health foods.


Subject(s)
Antioxidants , Colitis, Ulcerative , Cordyceps , Zebrafish , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , RAW 264.7 Cells , Cordyceps/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Oxidative Stress/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Monosaccharides/analysis , Reactive Oxygen Species/metabolism , Hydrogen Peroxide
13.
ACS Omega ; 9(14): 15753-15767, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617672

ABSTRACT

Tumors are one of the main diseases threatening human life and health. The emergence of nanotechnology in recent years has introduced a novel therapeutic avenue for addressing tumors. Through the amalgamation of nanotechnology's inherent attributes with those of natural enzymes, nanozymes have demonstrated the ability to initiate catalytic reactions, modulate the biological microenvironment, and facilitate the adoption of multifaceted therapeutic approaches, thereby exhibiting considerable promise in the realm of cancer treatment. In this Review, the application of nanozymes in chemodynamic therapy, radiotherapy, photodynamic therapy, photothermal therapy, and starvation therapy are summarized. Moreover, a detailed discussion regarding the mechanism of conferring physiotherapeutic functionality upon catalytic nanosystems is provided. It is posited that this innovative catalytic treatment holds significant potential to play a crucial role within the domain of nanomedicine.

14.
Inorg Chem ; 63(14): 6192-6201, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38518256

ABSTRACT

Fe2O3 is a promising semiconductor for photoelectrochemical (PEC) water decomposition. However, severe charge recombination problems limit its applications. In this study, a F-Fe2O3-x/MoS2 nanorod array photoanode was designed and prepared to facilitate charge separation. Detailed characterization and experimental results showed that F doping in Fe2O3 regulated the electronic structure to improve the conductivity of Fe2O3 and induced abundant oxygen vacancies to increase the carrier concentration and promote charge separation in bulk. In addition, the internal electric field between F-Fe2O3-x and MoS2 facilitated the qualitative transfer of the photogenerated charge, thus inhibiting their recombination. The synergistic effect between the oxygen vacancy and F-Fe2O3-x/MoS2 heterojunction significantly enhanced the PEC performance of Fe2O3. This study provides a universal strategy for designing other photoanode materials with high-efficiency charge separation.

15.
Mol Pharm ; 21(4): 2043-2057, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38471114

ABSTRACT

The capillarization of hepatic sinusoids resulting from the activation of hepatic stellate cells poses a significant challenge, impeding the effective delivery of therapeutic agents to the Disse space for liver fibrosis treatment. Therefore, overcoming these barriers and achieving efficient drug delivery to activated hepatic stellate cells (aHSCs) are pressing challenge. In this study, we developed a synergistic sequential drug delivery approach utilizing neutrophil membrane hybrid liposome@atorvastatin/amlisentan (NCM@AtAm) and vitamin A-neutrophil membrane hybrid liposome @albumin (VNCM@Bai) nanoparticles (NPs) to breach the capillary barrier for targeted HSC cell delivery. Initially, NCM@AtAm NPs were successfully directed to the site of hepatic fibrosis through neutrophil-mediated inflammatory targeting, resulting in the normalization of liver sinusoidal endothelial cells (LSECs) and restoration of fenestrations under the combined influence of At and Am. Elevated tissue levels of the p-Akt protein and endothelial nitric oxide synthase (eNOS) indicated the normalization of LSECs following treatment with At and Am. Subsequently, VNCM@Bai NPs traversed the restored LSEC fenestrations to access the Disse space, facilitating the delivery of Bai into aHSCs under vitamin A guidance. Lastly, both in vitro and in vivo results demonstrated the efficacy of Bai in inhibiting HSC cell activation by modulating the PPAR γ/TGF-ß1 and STAT1/Smad7 signaling pathways, thereby effectively treating liver fibrosis. Overall, our designed synergistic sequential delivery system effectively overcomes the barrier imposed by LSECs, offering a promising therapeutic strategy for liver fibrosis treatment in clinical settings.


Subject(s)
Endothelial Cells , Hepatic Stellate Cells , Humans , Endothelial Cells/metabolism , Bionics , Capillaries/metabolism , Liposomes/metabolism , Neutrophils/metabolism , Vitamin A/metabolism , Vitamin A/pharmacology , Liver/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism
16.
Oral Oncol ; 151: 106725, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430711

ABSTRACT

BACKGROUND: Non-anatomical factors significantly affect treatment guidance and prognostic prediction in nasopharyngeal carcinoma (NPC) patients. Here, we developed a novel survival model by combining conventional TNM staging and serological indicators. METHODS: We retrospectively enrolled 10,914 eligible patients with nonmetastatic NPC over 2009-2017 and randomly divided them into training (n = 7672) and validation (n = 3242) cohorts. The new staging system was constructed based on T category, N category, and pretreatment serological markers by using recursive partitioning analysis (RPA). RESULTS: In multivariate Cox analysis, pretreatment cell-free Epstein-Barr virus (cfEBV) DNA levels of >2000 copies/mL [HROS (95 % CI) = 1.78 (1.57-2.02)], elevated lactate dehydrogenase (LDH) levels [HROS (95 % CI) = 1.64 (1.41-1.92)], and C-reactive protein-to-albumin ratio (CAR) of >0.04 [HROS (95 % CI) = 1.20 (1.07-1.34)] were associated with negative prognosis (all P < 0.05). Through RPA, we stratified patients into four risk groups: RPA I (n = 3209), RPA II (n = 2063), RPA III (n = 1263), and RPA IV (n = 1137), with 5-year overall survival (OS) rates of 93.2 %, 86.0 %, 80.6 %, and 71.9 % (all P < 0.001), respectively. Compared with the TNM staging system (eighth edition), RPA risk grouping demonstrated higher prognostic prediction efficacy in the training [area under the curve (AUC) = 0.661 vs. 0.631, P < 0.001] and validation (AUC = 0.687 vs. 0.654, P = 0.001) cohorts. Furthermore, our model could distinguish sensitive patients suitable for induction chemotherapy well. CONCLUSION: Our novel RPA staging model outperformed the current TNM staging system in prognostic prediction and clinical decision-making. We recommend incorporating cfEBV DNA, LDH, and CAR into the TNM staging system.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Neoplasm Staging , Nasopharyngeal Carcinoma/pathology , Retrospective Studies , Herpesvirus 4, Human/genetics , Prognosis , Nasopharyngeal Neoplasms/pathology , DNA
17.
Endocrine ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502364

ABSTRACT

PURPOSE: This study aimed to evaluate the factors associated with bilateral papillary thyroid carcinoma (PTC) and lateral cervical lymph node metastasis (LLNM) in patients with suspicious unilateral PTC. METHODS: This study analyzed patients with suspicious unilateral PTC who were enrolled in a university hospital between 2016 and 2019 in Zhejiang, China. Using logistic regression, the study examined the factors associated with bilateral PTC and LLNM in demographic data, anthropometric measurements, lifestyle factors, medical history, preoperative diagnostic tests, and histopathological factors. RESULTS: A total of 256 patients, with a mean age of 49 years, were enrolled. Bilateral PTC was associated with multifocality (aOR: 5.069, 95% CI: 2.440-10.529, P < 0.001), and contralateral nodule in the upper (aOR: 9.073, 95% CI: 2.111-38.985, P = 0.003) and middle (aOR: 9.926, 95% CI: 2.683-36.717, P < 0.001). LLNM was positively associated with bilateral PTC (aOR, 4.283, 95% CI: 1.378-13.308, p = 0.012), male (aOR, 3.377, 95% CI: 1.205-9.461, P = 0.021), upper location of carcinoma (aOR, 3.311, 95% CI: 1.091-10.053, p = 0.035), and punctate echogenic foci (aOR, 3.309, 95% CI: 1.165-9.394, P = 0.025). Contralateral maximal nodule in the upper (aOR: 0.098, 95% CI: 0.015-0.628, p = 0.014), middle (aOR: 0.114, 95% CI: 0.033-0.522, p < 0.001), and lower (aOR, 0.028, 95% CI: 0.003-0.276, P = 0.002) location were inversely associated with LLNM. CONCLUSION: Upper and middle location of contralateral nodule and tumor multifocality predicted the risk bilateral PTC. Bilateral PTC, male, upper tumor location, punctate echogenic foci and contralateral nodule location in the entire lobes were independent predictors for LLNM.

18.
Fitoterapia ; 175: 105916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527590

ABSTRACT

Six previously unreported solanidane steroidal alkaloids, namely lyrasolanosides A-F, were isolated from Solanum lyratum. In addition, five known steroidal alkaloids were also identified. The structures of these compounds were determined through the use of NMR, HRESIMS,UV, IR and ECD analysis. To assess their bioactivities, the cytotoxic effects of the six previously unreported compounds were evaluated on A549 cells. The results revealed that lyrasolanoside B (2) exhibited the highest potency among them. Lyrasolanoside B (2) exhibited significant inhibition of cell migration, invasion, and adhesion dramatically. Mechanistically, it was found to suppress the activity of JAK2/STAT3 signaling pathway by downregulating the expression of phosphorylated JAK2/STAT3 in an exosome-dependent manner. In addition, lyrasolanoside B (2) was found to significantly upregulate the expression of E-cadherin and downregulate the expression of N-cadherin and vimentin. These findings indicate that lyrasolanoside B (2) inhibits the metastasis of A549 cells by suppressing exosome-mediated EMT. These findings suggest that lyrasolanoside B (2) may inhibit the metastasis of lung cancer by regulating A549-derived exosomes.


Subject(s)
Solanum , Humans , A549 Cells , Molecular Structure , Solanum/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Movement/drug effects , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Solanaceous Alkaloids/pharmacology , Solanaceous Alkaloids/isolation & purification , Signal Transduction/drug effects , Alkaloids/pharmacology , Alkaloids/isolation & purification , China
19.
BMC Musculoskelet Disord ; 25(1): 206, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454404

ABSTRACT

BACKGROUND: Osteoporosis is a genetic disease caused by the imbalance between osteoblast-led bone formation and osteoclast-induced bone resorption. However, further gene-related pathogenesis remains to be elucidated. METHODS: The aberrant expressed genes in osteoporosis was identified by analyzing the microarray profile GSE100609. Serum samples of patients with osteoporosis and normal group were collected, and the mRNA expression of candidate genes was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The mouse cranial osteoblast MC3T3-E1 cells were treated with dexamethasone (DEX) to mimic osteoporosis in vitro. Alizarin Red staining and alkaline phosphatase (ALP) staining methods were combined to measure matrix mineralization deposition of MC3T3-E1 cells. Meanwhile, the expression of osteogenesis related genes including alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), Osterix, and bone morphogenetic protein 2 (BMP2) were evaluated by qRT-PCR and western blotting methods. Then the effects of candidate genes on regulating impede bone loss caused by ovariectomy (OVX) in mice were studied. RESULTS: Cyclin A1 (CCNA1) was found to be significantly upregulated in serum of osteoporosis patients and the osteoporosis model cells, which was in line with the bioinformatic analysis. The osteogenic differentiation ability of MC3T3-E1 cells was inhibited by DEX treatment, which was manifested by decreased Alizarin Red staining intensity, ALP staining intensity, and expression levels of ALP, OCN, OPN, Osterix, and BMP2. The effects of CCNA1 inhibition on regulating osteogenesis were opposite to that of DEX. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that genes negatively associated with CCNA1 were enriched in the TGF-beta signaling pathway. Inhibitor of TGF-beta signaling pathway partly reversed osteogenesis induced by suppressed CCNA1. Furthermore, suppressed CCNA1 relieved bone mass of OVX mice in vivo. CONCLUSION: Downregulation of CCNA1 could activate TGF-beta signaling pathway and promote bone formation, thus playing a role in treatment of osteoporosis.


Subject(s)
Anthraquinones , Osteoporosis , Transforming Growth Factor beta , Animals , Female , Humans , Mice , Alkaline Phosphatase/metabolism , Cell Differentiation , Cyclin A1/metabolism , Osteoblasts/metabolism , Osteogenesis , Osteoporosis/chemically induced , Transforming Growth Factor beta/metabolism , Transforming Growth Factors/adverse effects , Transforming Growth Factors/metabolism
20.
J Multidiscip Healthc ; 17: 913-922, 2024.
Article in English | MEDLINE | ID: mdl-38445067

ABSTRACT

Background: Cerebral palsy (CP) ranks as a major cause of motor disabilities in children, with spastic CP making up roughly 70-80% of all CP cases. The primary objective of our study is to identify characteristics of Traditional Chinese Medicine(TCM) symptom of spastic CP, thereby establishing correlations between the TCM symptom and the disease, providing a more scientific theoretical foundation for TCM treatments on spastic CP, enabling a deeper comprehension of clinical interventions, ultimately, improving rehabilitation outcomes in TCM treatment for spastic CP. Methods: We conducted a data mining study on TCM symptom of spastic CP children aged 4-14 years old treated at Xi'an Encephalopathy Hospital Affiliated to Shaanxi University of Chinese Medicine, from October 2021 to March 2023. The medical records of all eligible and complete spastic CP patients were extracted, processed for data cleansing, transformed, and subsequently analyzed to discern distinctive TCM symptom. K-Means Clustering Analysis and Association Rule Analysis were used for data mining. Results: Core symptoms identified for spastic CP encompassed "Motor Dysfunction", "Impaired Speech", "Delayed Development", "Limb Stiffness", "Rigidity in the limbs", "Intellectual Impairment", "Timidity and susceptibility to startle responses", "Muscle Wasting", and "Pale or Dull Complexion". Among the top-ranking associations of symptom, patterns emerge wherein "Motor dysfunction" intertwine with "Impaired speech", "Motor dysfunction" coexist with "Delayed development", and "Impaired speech" are accompanied by "Delayed development". Conclusion: This study identified the core symptom of spastic CP and tentatively suggests that the clinical manifestations of spastic CP are essentially consistent with the TCM pattern "liver exuberance and spleen weakness". This finding has facilitated the preliminary establishment of correlations between TCM pattern differentiation and the disease in medicine. It is anticipated that this correlation will bring tangible benefits to a larger number of children with spastic CP.

SELECTION OF CITATIONS
SEARCH DETAIL
...